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Abstract. We present an approach to the study of cognitive phenomena
by using evolutionary computation. To this end we use a spatial, devel-
opmental, neuroevolution system. We use our system to evolve ANNs
to perform simple abstractions of the cognitive tasks of color perception
and color reading. We define these tasks to explore the nature of the
Stroop effect. We show that we can evolve it to perform a variety of cog-
nitive tasks, and also that evolved networks exhibit complex interference
behavior when dealing with multiple tasks and incongruent data. We
also show that this interference behavior can be manipulated by chang-
ing the learning parameters, a method that we successfully use to create
a Stroop like interference pattern.

1 Introduction

Much research in cognitive psychology has been devoted to goal directed behav-
ior or to the mental processes involved in focusing on relevant information and
declining or ignoring irrelevant information. One of the paradigmatic tasks in
cognitive psychology is the Stroop task in which people are presented with words
in color (e.g., RED in green) and asked to pay attention to the color and ignore
the meaning of the word. The current work applies evolutionary algorithms
(EAs) to study the mechanisms involved in the Stroop task.

1.1 The Stroop Effect

In his original work Stroop [14] presented participants with lists of stimuli on
a card and asked them to name the color of the ink as fast as possible. He
measured the time to name 100 stimuli on each card. Stroop used two conditions,
incongruent (e.g., RED in green) and neutral (i.e., patches of colors). Responding
was slower to the incongruent condition than to the neutral condition. Stroop
suggested that the difference between incongruent and neutral conditions was
an indication for the automaticity of word reading. Importantly, when he asked
participants to read the words and ignore their color, word reading was not
hampered by the incongruent colors.
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With the introduction of computers to psychology laboratories, the task
changed to a trial-by-trial task. Vocal response time of participants was measured
in milliseconds. These single trial experiments enable experimenters to include
congruent trials (i.e., Green in green). As computer presentations mix all con-
ditions, participants are unable to predict the appearance congruent inputs and
cannot adopt a reading strategy for those inputs.

Research on goal directed behavior use not only the Stroop task but other
tasks also [2,5,12].

1.2 Neuroevolution

Neuroevolution is the subfield of evolutionary computation concerned with grow-
ing Artificial Neural Networks (ANNs) via artificial evolution. The field has
attracted much research effort. Stanly and Miikkulainen [13] created the NEAT
system for the explicit purpose of evolving complex networks from simple initial
networks. NEAT uses direct encoding where evolved genes relate to specific parts
of the network. HyperNEAT is a neuroevolution system created on the basis of
NEAT that uses indirect encoding and is widely used to evolve ANNs that per-
form various tasks [10,11,15]. HyperNEAT works by evolving Meta-networks
with NEAT, that in turn decide on edge weights in the ANN that is meant to
perform the task. Some neuroevolution systems take a cue from nature and use
a developmental scheme. For example, Kitano [9] presented a method of evolv-
ing grammars that generate ANN connectivity maps. Another example is Gruau
[4]. Gruau suggested the concept of Cellular Encoding (CE) where the individ-
ual neurons act as cells during the developmental process. In Gruau’s system
development of ANNs is dictated by the genome (a tree genome in [9]’s case. A
linear genome in ours). Many other implementations are presented in a review
by Floreano et al. [3]

1.3 The Current Work

In this work we present an evolutionary learning based approach to the study of
cognitive phenomena. We employ an EA on populations of randomly generated
ANNs in order to evolve networks that perform cognitive tasks. This allows
us to explore the specific conditions under which certain phenomena may occur.
Specifically, in the first phase of the project we wanted to create a neuroevolution
system that features natural qualities. Next, we attempted to generate a Stroop
effect. Specifically, we aimed to generate interference and facilitation and also
the asymmetry between word reading and color naming. That is, significant
interference and facilitation in color naming with small or null effects in word
reading.

2 Spatial Developmental Neuroevolution System

As suggested earlier, we designed our evolutionary system with an eye towards
nature. We cannot emulate all natural traits but we focused on three important
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traits which we integrated as design features. These important attributes of our
system are listed below:

1. ANN based: We chose neuroevolution because the artificial neuron is an
abstraction of the biological neuron. Though the two are by no means iden-
tical an ANN is similar to brain systems in being a decentralized computa-
tion system made of simple computation units that share some of the same
attributes.

2. Developmental: A gene in the individual’s genome does not map directly to a
specific simple element in the final network. Rather, it is seen as a command
that is to be performed by the developing network or a subset of its artificial
neurons, during the developmental process.

3. Spatial: Every artificial neuron in our system is located in some point in a
virtual space. Developmental steps are space related, placing, moving, and
connecting neurons to each other using spatial coordinates.

2.1 The Spatial ANN

The ANNs in our system consist of three distinct layers: An input layer, an
output layer, and a hidden layer. Each one of the layers exists in its own space
defined by the user. The user defines the number of dimensions each layer has
and the size of each dimension. The spaces contain a discrete grid of locations
where a neuron may reside (e.g. A 3D layer of size 3 × 4 × 5 contains exactly
3 × 4 × 5 = 60 possible neuron locations).

In the input and output layers every location contains an artificial neuron.
The hidden layer’s content depends on the individual’s genome. The genome
defines all hidden neurons as well as all network edges. The input values are
real numbers in the [−1,1] range (we typically use the extreme values −1 and 1
but the system supports using other values as well). Outputs are limited to the
[−1,1] range.

2.2 Genome Structure

Our encoding is based on a genome in the form of a linear array of genome
atoms (or genes). Each gene is a set of integers and real numbers denoted by

Table 1. Fields in the genome atom

Field name Field type

Read Mode Integer

New Read Mode Integer

Opcode Integer

Weight Real

Threshold Real

Location Offset Integer array
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field names. Table 1 presents the names of the fields. The last line shows the
Location offset array of fields. This is an integer array that signifies a location
offset in one of the network grids (the identity of which depends on the type of
gene being read). The length of the array is determined by the number of spatial
dimensions which the user controls using run parameters.

2.3 Run Parameters

The particulars of each run are controlled by the user with a series of run para-
meters. Evolutionary parameters control the evolutionary process, fitness para-
meters control the calculation of individual fitness, ANN parameters control the
basic attributes of the networks and encoding parameters control the genome’s
encoding rules into the ANN phenotype.

Evolutionary parameters include number of generations, population size,
crossover probability, mutation probability, type of selection and diversity main-
tenance parameters. Our system utilized single-point crossover variant that
allows genome size to change by up to 20 % in each crossover event. Mutation
is uniform (mutation probability is per gene and not per individual). When a
spot in the genome is chosen for mutation, one of two actions is performed each
with a probability of 0.5: Either the atom itself is randomly changed or a small
genome segment beginning with the chosen atom is copied to another random
location in the genome. Our system uses standard tournament selection. In the
experiments described in this work we use a tournament size of 4.

The diversity maintenance measure limits the number of individuals with
similar behavior profiles. An individual’s behavior profile is an array made of
all the output values its ANN gets for all the fitness tests (the values in the
behavior profile are rounded to values in {−1,0,1}). The distance ratio between
two behavior profiles is the number of locations where the profiles differ divided
by the length of the profiles. We say that two individuals are neighbors if the
distance ratio between their behavior profiles is lower than a value controlled
by the user (which we typically set at 0.3). Our diversity maintenance system
allows an individual to be selected only if the number of its neighbors already
selected is lower than a certain threshold (typically 30). We used this method to
encourage diversity not only in genome but also in behavior.

Fitness parameters include the test inputs used to calculate the fitness score
and the test inputs used to calculate the benchmark score. The two calculations
differ in that the fitness score calculates a much smoother function. When cal-
culating fitness the individual is rewarded slightly for every output neuron that
generates a correct output, as well as being given a bonus for the whole network
giving the correct answer. The benchmark score is only affected by whether the
network’s answer to the test input is correct or not. In both the fitness and the
benchmark score cases we normalize the scores to the [0,1000] range to make
them easier to assess.

ANN network size parameters include a limit on the number of hidden layer
neurons and of network links, which we set to 400 and 4000, respectively. Initial
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genome size is set to 80 (limited to a maximum of 150). The number of different
read codes is set to 31. The read codes determine which neuron reads which gene.

The read encoding scheme for i codes is based on a complete binary tree with
i nodes that are tagged in level order starting at 1. In order to decide whether
or not a given neuron reads a given gene the read codes of the neuron and the
gene have to match. Two read codes match if one is an ancestor of the other in
the tree.

2.4 Spatial Developmental Encoding

Our system supports multiple encoding schemes. There are several different types
of actions that a gene can cause. The probability of a gene encoding a certain
action is controlled by the user, who chooses how much weight to assign to each
of the possible gene types. Table 2 contains the encoding weights we chose for our
experiments below. We chose these values empirically and with use of common
sense.

Table 2. Different action types and their weights in our experiments. an action can
have a weight of 0 or higher assigned to it. An action assigned a weight of 0 is impossible
to encode with any gene. The probability that an action will be encoded by a randomly
generated gene is proportionate to the weight of that action.

Action name Weight Action description

New Node 10 Create a new neuron

Move 2 Move neuron

Connect 4 Connect neuron to another neuron

Connect output 4 Connect neuron to an output

Connect input 4 Connect an input to neuron

Connect all output 0 Connect neuron to all outputs

Connect all input 4 Connect all inputs to neuron

Mutate Threshold 2 Change neuron threshold and factor

Split 8 Split existing neuron, creating a new neuron next
to it

Power Split 4 Split existing neuron, creating a new neuron with
all the same connections

Sleep 4 Neuron sleeps, no longer performing actions

Awaken 4 Sleeping neuron wakes up, and resumes
performing actions

Die 2 Neuron dies and is removed from network

Of the actions described in Table 2 New Node stands out as working on the
entire network (by adding a neuron to it). All other actions are activated by
individual neurons for which the read encoding matches.
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3 The Problem Domains

In this research, we interpret our outputs in a way analogous to nature. The
human brain often makes decisions when a plurality of neurons signal together
rather than relying on just one neuron. In our experiments we followed this
principle. The domains explored in this work (i.e., reading words or naming
colors) are classification tasks where the ANN is expected to tell a number of
different classes apart (e.g., distinguishing between three colors; blue, red, green).
In these tasks, the output is a two dimensional 4 × 5 grid, and each one of the
4 rows stands for one of the possible classes (e.g., blue). Decision is made by
plurality rule, with the network choosing class i if and only if row i in the
output has more 1’s in it than any other row.

3.1 Color Perception

In the Color Perception task (or CP) the ANNs are required to identify the color
of an input. In this work we define the CP task to work with a 3-dimensional
input grid of size 4 × 5 × 5. We see the input as made up of 4 2-dimensional
grids: 3 colored “visual field” grids (red, green and blue) and 1 “task definition”
grid that is used to differentiate between color perception and Color Reading
tasks. In the CP task we expect the forth grid of the input to contain all −1’s.
The output is a 2-dimensional grid of size 4× 5 with a correct output being one
that contains a plurality of 1’s in the row representing the right answer. Our
convention is that the first row stands for red, the second stands for green, the
third stands for blue and the forth is reserved for future use for inputs that do
not have one dominant color. In Figs. 1 and 2 there are two examples of inputs
for the CP task. In these figures, and all other figures further on that show
examples of inputs, we assume that an empty square represents an input of −1
and a square containing a black circle represents an input of 1.

Fig. 1. Neutral CP input of × sign in
blue

Fig. 2. Congruent CP input of + sign
in red
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3.2 Color Reading

In the Color Reading task (or CR) the ANNs are required to read a colored
symbol in the input. The input and output dimensions are identical to the CP
task. In the CR task we expect the forth grid of the input to contain all 1’s. Our
convention for the output is similar to CR. We chose symbols to stand for the
three base colors. The + symbol stands for red, the sideways H stands for green
and the H stands for blue. In Figs. 2, 3 and 4 we see the symbols for red, green
and blue, respectively.

Fig. 3. Incongruent CR input of green
sign (the sideways H) in red

Fig. 4. Incongruent CR input of blue
sign (the H) in green

4 Experiments

We ran several experiments in the different tasks. Each experiment was designed
to check another phenomenon. In each experiment we ran the same simulation
100 times in order to get sufficient data. For some experiments we had to compare
two or more types of runs. In those cases each run type got its own set of
100 simulations. Each 100 simulation experiment set took at most about a day
(running on a laptop computer with Intel Core i7-4700MQ 2400 MHz 4-core
processor). In all the runs below we used an elitism rate of 0.02, a mutation rate
of 0.02 and a crossover rate of 0.8.

The runs generate a lot of data. For brevity we do not present all generated
data here. We will present data which we think is relevant to the experiments
presented.

4.1 Evolving Color Perception and Reading

First we attempted to evolve ANNs that perform each task separately. For
brevity’s sake we do not go into much detail as far as these runs are concerned.

To evolve ANNs for the CP task we used a population of 200 individuals,
running for 120 generations. In 81 out of 100 simulations the ANNs reached a
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perfect benchmark score on the CP task. To evolve ANNs for the CR task we
used a population of 500 individuals, running for 900 generations. Though only
7 of the simulations resulted in individuals that had a perfect benchmark score
on the CR task, they were not far off the mark. The best solution in a simulation
had a mean benchmark score of 909.0457 (σ = 80.3975).

4.2 Mixed

We used a population of 400 individuals, running for 400 generations. We cal-
culated the fitness score and the benchmark score using the 12 test inputs from
The CP Experiment and the 21 test inputs from the CR Experiment. After the
runs terminated, we checked the best individuals on congruent and incongruent
inputs separately in both tasks.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 949.999 (σ = 119.6258) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
801.6637 (σ = 173.5871) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 893.3315 (σ = 176.5132)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 446.6643 (σ = 149.5968) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 208.3780).
The difference between the congruent and incongruent is significant in the CP
task (p < 0.0001), and also in the CR task (p < 0.0001).

In both tasks there are no significant differences in other attributes of the
individuals, which is to be expected as the individuals being compared are taken
from the same population pools. These results show that interference does occur
in our system and that the congruent inputs are easier for our evolved networks.
However there is not clear directionality as in the Stroop case. Networks do
better on congruent inputs in both the CP and CR tasks.

4.3 Weighted

We attempted to generate directionality by weighting the fitness function. In this
experiment we used the same parameters as in the mixed experiment described
in Sect. 4.2 except for the fitness function, which was weighted to bias evolution
in favor of the CR task. Each fitness test-case from the CR test suite affected
the fitness result as if it appeared 30 times in the suite.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 749.9962 (σ = 219.0449) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
493.3311 (σ = 141.9752) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 746.6633 (σ = 246.7312)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 738.3301 (σ = 191.3615) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 38.2965).
The difference between the congruent and incongruent is significant in the CP
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task (p < 0.0001), but it is insignificant in the CR task (p = 0.9915). This
approach successfully creates the desired asymmetry that is an attribute of the
Stroop effect.

4.4 Phased and Weighted

In this experiment we added a phasing element to our simulations. We ran a
population of 400 for 150 generations evaluating fitness on both CP and CR
tests, using the weighted mixed test suite we used in Sect. 4.3, then we allowed
the population to evolve for 400 generations on CR inputs only, and then let it
evolve for 150 more generations the weighted mixed test suite.

Looking at congruent inputs the best solution in a simulation had a mean
benchmark score of 716.6629 (σ = 243.3185) in the CP task. Looking at incon-
gruent inputs the best solution in a simulation had a mean benchmark score of
458.3311 (σ = 142.8719) in the CP task. Looking at congruent inputs the best
solution in a simulation had a mean benchmark score of 819.9976 (σ = 234.1278)
in the CR task. Looking at incongruent inputs the best solution in a simulation
had a mean benchmark score of 794.9971 (σ = 186.3103) in the CR task.

We conducted one-way ANOVA on the 4 score types (F (3, 396) = 64.7027).
Again the difference between the congruent and incongruent is significant in the
CP task (p < 0.0001), while it is insignificant in the CR task (p = 0.8256). This
approach also creates an asymmetry effect similar to Stroop, and also results
in a higher score on the CR task (however, this difference is not statistically
significant).

4.5 Neutral CP Input

Among our 12 inputs for the CP task there are 3 X shaped inputs that are neither
congruent nor incongruent. These are considered Neutral inputs (see Fig. 1 for
an example of a neutral CP input).

In the experiments we ran in which a Stroop like effect appeared the results
on neutral CP inputs fell somewhere in between the congruent and incongruent
scores. In the weighted fitness experiment the best solution in a simulation had
a mean benchmark score of 596.6617 (σ = 202.648) on neutral inputs. In the
phased weighted fitness experiment the best solution in a simulation had a mean
benchmark score of 569.9951 (σ = 202.6477) on neutral inputs. In light of these
results we can say that our experiments are Stroop like also in the classical
sense using neutral inputs. On the other hand this is also where our results
differ somewhat from the Stroop effect as it appears in humans (the difference
in performance between congruent and neutral tests is small to negligible).

5 Concluding Remarks

Our system employs various measures to make the developmental process more
like natural development.
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We presented a new developmental spatial neuroevolution system for cogni-
tive science research and used it to explore the Stroop effect and evolve ANNs
that show some Stroop like behaviors. We successfully replicated, in our evolved
networks, the phenomenon of interference due to conflict between the two tasks.
We also succeeded in establishing that this conflict can be directional, by biasing
the fitness function in favor of the reading task.

There is still much to be done and we want to explore these issues further
and also expand our system and look into some new areas. Listed below are
some avenues for future research which we believe are promising and we plan to
pursue:

– We plan to examine numerical cognition, checking to see if using simple tasks
as an evolutionary stepping stone improve the evolution of counting ability.
We plan to follow up on work by Katz et al. [8] and Cantlon et al. [1] that
suggests counting ability may have evolved from a simpler cognitive system
for size perception.

– We plan to expand our inquiry into the evolutionary dynamics of evolving
ANNs to perform cognitive tasks. Specifically we are interested in the effects
of changing task and environment in mid run on the resulting population.
Some of these effects have been demonstrated in the past in several simple
domains [6,7].

– We plan to explore the Stroop effect and other similar effects such as Numerical
Stroop and the Simon Effect.

Our system itself is still a work in progress, more functionality is needed
in order to make it more flexible so it can cover more complex behavior. An
obvious extension would be to allow for the evolution of recurrent networks that
can handle domains with multiple instances that require the network to react
according to new input as well as its own output (such as navigation tasks, and
tasks that require networks to have memory capabilities).
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