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Abstract. The community structure detection problem in weighted
networks is tackled with a new approach based on game theory and
extremal optimization, called Weighted Nash Extremal Optimization.
This method approximates the Nash equilibria of a game in which nodes,
as players, chose their community by maximizing their payoffs. After per-
forming numerical experiments on synthetic networks, the new method is
used to analyze functional connectivity networks of the brain in order to
reveal possible connections between different brain regions. Results show
that the proposed approach may be used to find biomedically relevant
knowledge about brain functionality.
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1 Introduction

During the last years, more and more computational methods for community
structure detection focus on dealing with very large datasets [8], while small sets
with more challenging structures are often ignored. However, many applications
require ‘sensible’ algorithms that can reveal the inner structure in networks for
which the architecture is not obvious and for which there is no available infor-
mation about the real structure. An example of such networks are the functional
connectivity networks of the brain, usually constructed from raw fMRI data. A
growing interest in brain research is reflected by recent American and European
large scale research projects that are dedicated to study the brain and its disor-
ders1. As the expected impact of these projects may be compared to that of the
1 Such projects include the BRAIN Initiative (http://www.braininitiative.nih.gov/,

April, 2016) and the European Human Brain Project (https://www.humanbrain
project.eu/, April, 2016).
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celebrated Human Genome Project, we anticipate an increased need for methods
that allow exploratory analysis and predictions based on datasets describing the
dynamics of the brain, such as fMRI data. As different parts of the brain work in
collaboration, community detection has a high potential to reveal relevant infor-
mation about brain functionality which may contribute to better understanding
the mechanisms of the brain and brain disorders.

In this context we are proposing exploring such networks with a new game
theoretic tool that uses the concept of Nash equilibria within an extremal opti-
mization algorithm to identify possible communities. We show that this method
is capable to identify inner network connections that are not grasped by other
methods.

2 Weighted Nash Extremal Optimization

The community structure detection problem consists in finding groups of nodes
in a network that are more linked to each other than to the rest of the net-
work [4]. In spite of the fact that there are many computational approaches to
this problem, there still does not exist a formal definition for the community
structure that is universally accepted to encompass the simple description from
above. In this paper we explore the use of the Nash equilibrium concept from
game theory as a possible characterization for the community structure with
non-overlapping nodes in weighted, undirected, networks.

2.1 The Community Structure Detection Game

Consider a weighted graph G = (V,E) where V is the set of nodes, V = {i}i=1,n,
and E the set of edges. Let W = {wij}i,j∈V be the set of weights wij associated
to each edge eij = (i, j) from E. In this work we will consider positive weights.

Let game Γ = (N,S,U) be composed of:

– the set of players N = V , i.e. each node is the network G is a player in game Γ ;
– the set of strategy profiles S = S1 × S2 × . . . × Sn, where × represents the

cartesian product, and Si is the set of strategies of player i. In Γ , Si represents
communities in G, i.e. each node has to chose a community; an element s ∈
S is called a strategy profile having the form s = (s1, s2, . . . , sn), where si
represents the community chosen by player i.

– the payoff functions U = {ui}i∈N , where ui : S → R, computed as the contri-
bution of a node to its community [16]:

ui(s1, s2, . . . , sn) = f(si) − f(si\{i}), (1)

where

f(C) =

∑
i,j∈C wij

∑
i∈C,j∈V wij

(2)
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is the fitness of community C. Thus, the payoff of a node i depends on its
strategy, as well as the strategies of the other nodes that have chosen the same
community as i, and the nodes that did not choose the community of i.

A strategy profile s∗ is a Nash Equilibrium if ui(si, s∗
−i) ≤ ui(s∗

i ), ∀i ∈ N and
∀si ∈ Si, where (si, s∗

−i) = (s∗
1, . . . , si, . . . , s

∗
n) is the strategy profile in which all

players chose their strategies from s∗, except player i that chooses si. A Nash
equilibrium (NE) of game Γ is a partition over the set of nodes N = V such that
no node can increase its payoff by unilateral deviation. We can consider this also
as an alternate definition for the community structure of a network; to test this
hypothesis we use numerical experiments performed on benchmarks with known
community structures.

NEs of a game can be computed with heuristic methods by using the Nash
ascendancy relation between strategy profiles [9] that counts the number tN (s, q)
of players that can improve their payoffs by unilateral deviation from one strategy
profile s to q:

tN (s, q) = card{i ∈ N |ui(s) < ui(qi, s−i), qi �= si}. (3)

Strategy s is better in Nash sense than strategy q (or strategy s Nash ascends
strategy q) if tN (s, q) < tN (q, s). A strategy profile s∗ is non-dominated with
respect to the Nash ascendancy relation if �q ∈ S such that q Nash ascends s.
It is known that the set of Nash non-dominated solutions is equal to the set of
Nash equilibria of the game [9].

2.2 Method

The community detection problem in unweighted networks has been previously
approached by an extremal optimization algorithm based on the game theo-
retic approach described above [16]. Another similar extremal optimization app-
roach that maximizes the modularity function [12] can be found in [10]. In this
paper we present a new extremal optimization variant, called Weighed Nash
Extremal Optimization (W-NEO), designed to capture the community struc-
ture in weighted networks.

An extremal optimization (EO) algorithm [2] typically uses one individual
s = (s1, . . . , sn) to search the space and preserves each iteration the best solution
found up to that moment, sbest. A fitness value is assigned to each component si
in s, i = 1, n. Each iteration, the component sj having the worst fitness value is
randomly re-initialized. If the new individual is better than sbest, it will replace
it. If not, the search continues from the new value of s.

W-NEO extends EO by evolving a population of pairs (s, sbest) that search
independently for the Nash equilibria of game Γ by using the Nash ascendancy
relation.

Encoding. Individuals s (and sbest) are represented as strategy profiles of game
Γ , i.e. integer vectors; a component i represents the community of node i. Com-
munities are numbered from 0 to a maximum value ncomm. The value of ncomm

differs between EO pairs (s, sbest), it is set at the beginning of the search, and
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Algorithm 1. W-NEO step
1: For current configuration s evaluate ui(s), the payoff function corresponding to

each node i ∈ {1, . . . , n}.
2: find the k worst components in s and replace them with a random value;
3: if (s Nash ascends sbest) then
4: set sbest := s.
5: end if

Algorithm 2. Weighted Nash Extremal Optimization
1: Randomly initialize and evaluate popsize pairs of configurations (s, sbest).
2: Compute kNash;
3: Set k1 = kNash;
4: repeat
5: Update k = min{kNash, [k1 + 2 nr.it

MaxGen
(1 − k1)]};2

6: Apply a W-NEO step on each (s, sbest) pair;
7: Update kNash;
8: until the maximum number of generation is reached;
9: Return sbest with highest fitness Φ.

2 nr.it is the iteration number, and [·] represents the integer part.

takes values between a minimum and maximum expected number of communi-
ties cmin and cmax.

Fitness Assignment. For each individual, the payoff functions ui, i = 1, n (1) are
computed and used to compare nodes within a W-NEO iteration. To compare s
and sbest, a different fitness function, Φ, is used, computed as:

Φ(s) =
n∑

i=1

ui(s) · w
(in)
i , (4)

where w
(in)
i is the sum of the weights of the links node i has with other nodes

in its community. W-NEO uses fitness Φ as an alternative to the modularity
function [12].
Extremal Optimization. Several EO variants proposed for the community struc-
ture problem in unweighted networks extend the typical EO by modifying more
than one node during an iteration. This number, denoted by k, can be fixed, or
set adaptively. In the first half of the search, Noisy EO [10] linearly decreases the
value of k from a given value to 1, whereas in its second phase, k is kept constant.
MNEO [16] decreases k exponentially throughout the search. The recommended
initial value for k is 10% of the number of nodes, which is a parameter for both
methods.

W-NEO uses an adaptive mechanism to update k values by combining the
linear decrease of NoisyEO with the tN (s, sbest) operator used by the Nash ascen-
dancy relation (3). Each iteration, the number kNash is computed as the maxi-
mum value of tN (s, sbest) in that iteration. The number k of nodes changed in
one iteration is computed as the minimum value between kNash and the one



Community Structure Detection for the Functional Connectivity Networks 637

corresponding to NoisyEO. The first kNash value, denoted by k1, is computed
immediately after the initialization of the population and it is used to set the
initial value in the equation that decreases k linearly. Thus, W-NEO does not
need a parameter for the initial value of k. The outline of W-NEO is presented
in Algorithm 2 and a W-NEO step is detailed in Algorithm1.
Parameters. W-NEO uses the following parameters:

– Population size - popsize;
– Maximum number of generations - MaxGen;
– Expected minimum and maximum number of communities.

2.3 Numerical Experiments - Synthetic Benchmarks

The performance of W-NEO is tested on a set of synthetic benchmarks and com-
pared with the results obtained by other methods that compute the community
structure in weighted networks.

Benchmark. The LFR benchmark [5] is used to evaluate the performance of
W-NEO in a first phase. Three sets of networks and corresponding community
structures were generated2, with parameters presented in Table 1. The most
important parameters are μ, representing the ratio of links a node has outside
its community. A μ value of 0.5 indicates that the node has an equal number
of links in its community and outside, and a μ value of 0.6 that the node has
more links outside than inside. The μw parameter is similar, taking weights into
account. μw = 0.6 means that the sum of weights of the links the node has in
its community is 0.4 of the total strength of that node.

Table 1. LFR benchmarks. 30 networks were generated for each μ and μw value. κ is
the average node degree, κmax is the maximum degree, and τ1 and τ2 are the minus
exponents for the degree sequence and for the community size distribution, respectively.

Name N κ κmax τ1 τ2 μ μw Comm. size

LFR 128 128 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [10,50]

LFR 1000 S 1000 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [10,50]

LFR 1000 B 1000 20 50 2 1 0.3,0.4,0.5,0.6 0.1–0.6 [20,100]

The most challenging sets in this benchmark are the small ones (128 nodes),
with μ and μw values above 0.4, having the least well defined structures. The
bigger networks may seem more challenging because of their size, but they all
present a well defined community structure even for μ, μw = 0.5, because of
the greater number of communities in which the outside links of a node can
be distributed, making the difference between the number of links inside its
2 By using the code available at https://sites.google.com/site/andrealancichinetti/

software, accessed May, 2015.

https://sites.google.com/site/andrealancichinetti/software
https://sites.google.com/site/andrealancichinetti/software
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Fig. 1. Average NMI values for the
LFR sets with 128 nodes. Wilcoxon
sign-rank tests results are presented in
Table 2
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1000 nodes sets. Wilcoxon sign-rank
tests results are presented in Table 2.

community and the number of links in any other community bigger than in the
case of networks with 128 nodes and smaller number of communities.

Performance Evaluation. Results are evaluated by using the normalized mutual
information indicator (NMI) [6]. A NMI of 1 indicates identical community struc-
tures. When two different community structures are compared to the real struc-
ture, the one having the higher NMI value is considered better.

Comparisons with Other Methods. The results obtained by W-NEO are compared
with those obtained by three state of art methods: Oslom [7], Infomap [14], and
Louvain [1]. Differences in median NMI values obtained by each method for
each set of 30 networks are evaluated by using the Wilcoxon sign-rank test with
a confidence level of 0.05.

Parameter Settings. W-NEO parameters are: population size, minimum and
maximum expected number of communities, and maximum number of gener-
ations. Considering that (s, sbest) pairs evolve independently, the effect of size
of the of the population is the usual one, in this case using a larger population
being equivalent with performing multiple independent runs with smaller popu-
lations. The expected number of communities influences the results in a similar
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Table 2. Wilcoxon sign -rank test results. A • indicates that the corresponding method
provided the best results. If there are more methods with results that are not statisti-
cally different from the best one, they are also marked with a •.

128 nodes 1000 nodes S 1000 nodes B

µ µW W -NEO Oslom Infomap Louvain W -NEO Oslom Infomap Louvain W -NEO Oslom Infomap Louvain

0.3 0.1 • • • • - • • • - • • •
0.2 • • • • - • • • - • • •
0.3 • • - • - • • - - • • •
0.4 - • - - - • • - - • • -

0.5 - • - - - • - - - • - -

0.6 - • - - - • - - - • - -

0.4 0.1 • - • • - • • • - • • •
0.2 • - • • - • • • - • • •
0.3 • - - • - • • • - • • •
0.4 • - - • - • • - - • • •
0.5 • • - - - • - - - • • -

0.6 - • - - - • - - - • - -

0.5 0.1 • - • • - • • • - • • •
0.2 • - • • - • • • - • • •
0.3 • - • • - • • • - - • •
0.4 • - - - - • • • - - • •
0.5 • - - - - • • - - - • •
0.6 • - - - - • - - - - • •

0.6 0.1 - - • - - • • • - • - -

0.2 - - • - - - • • - - • •
0.3 • - • - - - • - - - • •
0.4 • - - - - - • • - - • -

0.5 • - - • - - • • - - • -

0.6 • - - • - - • - - - • •

manner. For these numerical experiments, the minimum and maximum number
of communities was set such that approx. 20 % of the population has assigned
the real number of communities. The population size was set to 30. Because the
maximum number of generations indirectly influences the results, as it related
to the value of k (Algorithm 2), several values are tested for this parameter.

Results and Discussion. Numerical results obtained on the synthetic benchmarks
are presented as error-bars in Figs. 1 and 2 (MaxGen = 10 000). The results of
the Wilcoxon sign-rank test are presented in Table 2. For the small networks,
the results provided by W-NEO are in some cases the best compared with the
other methods, and in most cases as good as the others. For the 1000 nodes
sets, W-NEO results are statistically different than all the others, but with NMI
values greater than 0.9 in almost all cases (Fig. 2).

W-NEO Parameters. Figures 3 and 4 illustrate the variation of average NMI
values with the maximum number of generations. For each set two values are
represented: the average NMI of the individuals having the best Φ value in each
run and the average NMI of the individual with the best NMI in the final pop-
ulation. The small differences between the two values indicate the the function
Φ can be considered as an efficient fitness function for assessing the quality of a
community structure.
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3 Brain Functional Connectivity Networks

In order to examine if W-NEO can detect communities of the brain, we used
a public resting-state fMRI database from the 1000 Functional Connectomes
Project, Addiction Connectome Preprocessed Initiative. In our study we used
the MTA 1 dataset with the ANTS registered, no scrubbing, no global signal
regression preprocessing pipeline.3 The dataset contains 126 subjects’ resting-
state data, based on which, and an atlas of 90 functional regions of interest
(ROI) [15], we calculated the Pearson correlation between the activities of the
ROIs.4 We calculated an “averaged” network, in which nodes correspond to
ROIs, denoted as r1, r2, . . ., and the weight of each connection {ri, rj} is the
average of the correlations between ri and rj over all the subjects. Only positive
correlations with values above 0.35 were considered.

For each subject, information about cannabis usage and the childhood diag-
nosis for Attention Deficit Hyperactivity Disorder (ADHD) is available. There-
fore, additionally to the “averaged” network, we considered four disjoint groups
of subjects: (A) the healthy subjects (no cannabis usage, no ADHD), (B)
cannabis users without ADHD, (C) ADHD patients who do not use cannabis,
and (D) subjects with childhood diagnoses of ADHD who regularly use cannabis.
For each of these groups, we obtained a network of ROIs. In each of these net-
works, we calculated the weight of the connection {ri, rj} as the average of the
correlations between ri and rj for the subjects belonging to the group.

From the community structure detection point of view, the brain functional
connectivity networks proved to be challenging; performing multiple runs with
the four algorithms led to different results for each run and each algorithm, with
Oslom, Infomap and Louvain finding structures with maximum 3 communities.
However, by setting the values for the minimum and maximum number of com-
munities to 10 and 20, W-NEO provides structures with more communities that
can be further analyzed.

Thus, after performing 30 independent runs (MaxGen = 3000) for each
network, the resulting community structures were aggregated in the following
manner: each node was placed in the same community with the node with which
it was placed in the same community most of the times in the 30 runs. If there
are several such nodes, one of them is selected at random. Because the resulting
community structure contained many communities formed only by two nodes, a
further step consisted in uniting the communities having the smallest fitness val-
ues with those with which they have the strongest link. The strength of the link
between two communities is computed as the ratio between the sum of weights
of the links that connect the communities and the number of nodes that link
them. Communities are merged until their number equals the recommendation
of the domain experts, i.e. 14.

3 See http://fcon 1000.projects.nitrc.org/indi/ACPI/html/ for details.
4 One ROI (Basal Ganglia 4) did not include meaningful measurement for any of the

126 subjects, therefore we ignored this ROI in the subsequent analysis.
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Fig. 5. Community structure of the averaged whole brain functional connectivity
network.

Fig. 6. Community structure of the anterior and posterior salience network in case of
(A) healthy subjects, (B) cannabis users without ADHD, (C) subjects with childhood
diagnoses of ADHD who does not use cannabis, (D) subjects with childhood diagnoses
of ADHD who regularly use cannabis.

Results. The detected community structures (Figs. 5 and 6) are consistent with
domain knowledge and they illustrate that the proposed community detection
approach may be applicable to discover new insights about brain functional-
ity and brain disorders. In particular, we examined the structure of two large
communities of brain regions, the so called default mode network5 (anterior and
posterior default mode networks), and the salience network (anterior and poste-
rior salience networks).

The role of the default mode network (DMN) in drug addiction has been
shown by several studies [11,13]. In our community structures we found that the
DMN is more intact (more ROIs are in the same community) in non-addicted
subjects. In healthy subjects, 13 ROIs of the DMN belong to the same com-
munity, whereas we observed 11 ROIs of the DMN to be highly connected in
ADHD patients. In contrast, in case of cannabis addicts, both with and without
ADHD, the DMN is decomposed to several smaller communities (with less than
7 ROIs).

5 We note that in the brain research community, the phrases default mode network
and salience network are used to refer to two specific sets of strongly interconnected
regions of the brain. Therefore, the default mode network and the salience network
are communities according to the terminology used throughout this paper.
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The salience network has a critical role in attention, therefore it is expected
to be related to ADHD [3]. In healthy subjects and cannabis addicts without
ADHD, the salience networks were found to be intact, in particular 11 and 12
ROIs were observed within the same community. However, in subjects diagnosed
with ADHD, the salience network’s largest community has only 7 ROIs, see
Fig. 6.

4 Conclusions

The analysis of brain functional connectivity networks from the community
structure point of view can offer important information about the structure
and functioning of the brain. The brain networks are relatively small, with very
unclear structure, not detected by existing algorithms. In this paper we pro-
pose a game theoretic approach capable to identify strong connections in these
networks and construct community structures that can offer relevant knowledge
about the functioning of the brain.
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