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Abstract. The aim of the paper is to introduce a wait-and-see (WS)
reformulation of the transportation network design problem with sto-
chastic price-dependent demand. The demand is defined by hyperbolic
dependency and its parameters are modeled by random variables. Then,
a WS reformulation of the mixed integer nonlinear program (MINLP) is
proposed. The obtained separable scenario-based model can be repeat-
edly solved as a finite set of MINLPs by means of integer programming
techniques or some heuristics. However, the authors combine a tradi-
tional optimization algorithm and a suitable genetic algorithm to obtain
a hybrid algorithm that is modified for the WS case. The implementation
of this hybrid algorithm and test results, illustrated with figures, are also
discussed in the paper.
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1 Introduction

The transportation network design problem (TNDP) remains a challeng-
ing research topic in transportation planning. From constructing new roads,
pipelines, power lines, etc. to determining the optimal road toll, TNDP has
provided valuable information for capital investment in transportation [1,7,18].
Various approaches have been used to solve TNDP. Steenbrink [17] and
Magnanti and Wong [8] reviewed a number of the network design problems
(NDP’s) and some earlier algorithms. LeBlanc [7] proposed a branch-and-bound
procedure to solve the problem but the algorithm did not perform well in large-
scale problems. For a detailed review of solution techniques see, e.g., [1,11].

This paper presents a hybrid algorithm for the solution of a scenario-based
wait-and-see (WS) stochastic mixed integer nonlinear program (MINLP), which
models the design of a transportation network under price-sensitive stochas-
tic demand. Regarding the solution technique, we mention our direct approach
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derived from modeling ideas (e.g., [13]). Due to the growing popularity of pric-
ing strategies development and further applications in industry, we follow up on
our previous modeling ideas presented in [4], where we modeled a mixed integer
linear program with linearly price-dependent stochastic demand. So, we extend
our previous model from [4] into a more complex case with a nonlinear (hyper-
bolic) price-demand dependency and, therefore, we also modify the previously
used algorithm [4,13].

2 Stochastic TNDP with Pricing Solved by WS Approach

In this section, we develop the above mentioned MINLP which represents the
design of a transportation network under price-sensitive stochastic demand.
Note, that in our case, the network consists of three components: supply, demand,
and transition parts of the system, see [2]. Before we deal with the stochastic
problem and its WS reformulation, we shortly review the hyperbolic pricing
function [10].

2.1 Pricing

Consider a price-setting firm that faces a price-dependent demand function,
bi(pi), describing the dependency between price pi and demand bi for each cus-
tomer denoted by i. To capture real-world situations, we will further define the
demand function as bi(pi) = αip

−βi

i , where αi > 0 and βi > 1, see Fig. 1.
This means that the selling prices are decision variables, and so we want to

find the optimal price p∗
i for each customer i.

Fig. 1. Example of a hyperbolic demand-pricing function.
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2.2 Stochastic Demand and the WS Approach

In real-world problems, the customer demand information is often uncertain and
varying. This situation is usually modeled by one of the following determinis-
tic reformulations: (a) the here-and-now (HN) approach, which means that the
decisions are made before the demand is observed, see [15] and, specifically, [13];
(b) the wait-and-see (WS) approach, which means that the demand is known
at the decision point. An interested reader can also find useful references to
fundamental concepts of stochastic programming, e.g., in [6,15].

In this paper, we approach the stochastic TNDP with pricing using the WS
scenario-based approach. The scenario-based approach assumes that we have
enough observations of the parameters αi,s and βi,s (one combination of the
observations represents one particular scenario for each customer). In order to
develop the mathematical model, we define the following (decision) variables,
index sets and parameters.

• The decision variables:
xe,s : amount of the product to be transported on edge e in scenario s,
δen,s ∈ {0, 1} : 1 if new edge en is built in scenario s, 0 otherwise,
pi,s : unit selling price for customer i in scenario s,

• second-stage variables:
y+

i,s : shortages for customer i in scenario s,

y−
i,s : leftovers for customer i in scenario s,

• index sets:
E : set of edges, e ∈ E,
En : set of new (built) edges, en ∈ En, En ⊂ E,
i : set of customers (or locations with a non-zero demand), i ∈ I,
j : set of production locations (or warehouses), j ∈ J,
k : set of traffic nodes, k ∈ K,
V : set of all nodes (vertices) in the network, v ∈ V ,V = I ∪ J ∪ K,
S : set of all possible scenarios, s ∈ S, s = 1, 2, . . . ,m,

• and parameters:

Av,e : incidence matrix, Av,e

⎧
⎪⎨

⎪⎩

1 if edge e leads to node v,

−1 if edge e leads from node v,

0 otherwise,
bv,s : the demand in node v for scenario s,
ce : unit transporting cost on edge e,
den

: cost of building of a new edge en,
r+i , r−

i : unit penalty cost for shortages/leftovers at customer node i,
l, u : lower and upper bound for selling prices,
αi,s, βi,s : scenario-based (and demand-related) parameters.

Then, we formulate the stochastic TNDP with nonlinear pricing, which we
reformulate using WS approach, and so, we solve the model repeatedly, i.e., once
for each scenario:



658 D. Hrabec et al.

∀s ∈ S :

max
∑

i∈I

(
∑

e∈E

Ai,exe,s)pi,s − ∑

e∈E

cexe,s − ∑

en∈En

den
δen,s − ∑

i∈I

(r−
i y−

i,s + r+i y+
i,s)(1)

∑

e∈E

Ai,exe,s = bi,s − y+
i,s + y−

i,s, ∀i ∈ I, (2)

∑

e∈E

Aj,exe,s = bj,s, ∀j ∈ J, (3)

∑

e∈E

Ak,exe,s = bk,s, ∀k ∈ K, (4)

xen,s ≤ δen,s

∑

j∈J

(−bj), ∀en ∈ En, (5)

y+
i,s ≤ bi,s, ∀i ∈ I, (6)

xe,s ≥ 0, ∀e ∈ E, (7)
δen,s ∈ {0, 1}, ∀en ∈ En, (8)

y+
i,s, y−

i,s ≥ 0, ∀i ∈ I, (9)

pi,s ≥ l, ∀i ∈ I, (10)
pi,s ≤ u, ∀i ∈ I, (11)

bi,s = αi,sp
−βi,s

i,s , ∀i ∈ I. (12)

The objective function (1) maximizes the total profit, which is the revenue minus
all the costs (transportation, network design and penalties for leftovers and short-
ages). Equations (2–4) are balance constraints, i.e. amount entering a node is
equal to the demand plus the amount leaving; in addition, in the constraint
(2) we consider quantities presenting leftovers and shortages, respectively. (5)
guarantees that there will be no transported amount on non-built edges. (6) is a
constraint on shortages, i.e. any shortage can not be higher than related demand.
(7)–(11) state domains of decision variables, while Eq. (12) states the hyperbolic
dependency between price and demand (see Fig. 1).

Obviously, the problem (1)–(12) is nonlinear, but it seems that the exact
solvers deal with a linearized (MILP) version of it. Such nonlinear problems
often requires a heuristic approach, especially large scale problems. Therefore,
we further propose a hybrid algorithm in Sects. 3 and 4.

3 Hybrid Algorithm for the WS Approach

The above-mentioned model was coded in GAMS and solved by the BARON,
MINOS and CPLEX solvers for suitable test instances. The obtained results
are considered acceptable. The next solution attempt targeted large test prob-
lems using the same techniques; however, this led to an increase of the required
computational time.
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Due to the above, the decision to utilize previous experience was made,
see [3,13]. This resulted in the implementation of a modified hybrid algorithm
combining the GAMS code with a selected genetic algorithm (GA). The C++
implementation concentrating on the GAMS-GA interface is developed for the
updated GA, as it was discussed in [12]. This can also be replaced by other GAs
[9]. The principles of the following algorithmic scheme follow the papers [3,13].

1. Initialize the computer environment for parallel computations.
2. Define the scenario-based GAMS model and load the model and data into

*.gms files for each scenario. Specify control parameters for the GA so that
one instance is created for each scenario. The parameters can be defined either
by the user (e.g., the population size) or inherited from the GAMS code (e.g.,
how many edges in the network should be taken into account).

3. Build an initial population for each GA instance. Specifically, the initial values
of 0–1 variables must be generated and copied in the $INCLUDE files, from
which they are read by the GAMS code.

4. The GAMS model is repeatedly solved (in parallel, two loops, one for scenarios
and one by population size) by using the MINOS solver. Each run solves the
program for the fixed values of 0–1 variables. The profit (or, alternatively,
cost) function values are computed (initially in 3. and then in 8.).

5. The best results obtained from GAMS in 4. are saved for comparisons.
6. The termination conditions for the algorithm are tested (in parallel) and the

algorithm is terminated if they are met. Otherwise the algorithm proceeds
until the last scenario solution is obtained.

7. Input values for the GA from GAMS results are generated, see step 4. Specif-
ically, the profit function values for each member of population of the GA are
received from results of the GAMS runs in 4.

8. The GA run leads to an update of the set of 0–1 variables (population), see
[12] for details.

Broadly speaking, the GA works with 0–1 variable δen,s for each scenario s,
while MINOS solves the remaining nonlinear problem (NLP) for the fixed binary
variable δ, i.e. MINOS computes optimal xe,s, pi,s as well as value of the objective
function. Afterwards, the value of objective/fitness function (1) is sent back for
the solution assessment and then, according to 6., the algorithm continues.

4 Description of the Utilized Genetic Algorithm

This section shortly reviews key ideas of the utilized GA that works as the main
part of the hybrid algorithm, see Sect. 5. It follows the previous ideas of one of
the authors [12]; see also [13] for its extension.

In general, we consider a set of genetic operators containing: the crossover
operator, the mutation operator, and eventually other problem dependent or
implementation dependent operators. All these operators generate descendants
from parents. The parent selection operator and the genetic operators have a
probabilistic character and the deletion operator is usually deterministic. The
fitness value f is a non-negative number which captures a relative measure of
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the quality of every individual in the current population. The run of our GA can
be described using the following steps: (1) Generation of the initial population
(random generation is often used) composed of individuals. (2) Computation
of fitness function values related to 1). (3) Parent selection and generation of
offspring. (4) Creation of the new population by using deletion operator and
addition of offspring generated in the previous step. (5) Mutation. (6) If the
stopping rule is not satisfied, go to step 3), otherwise continue to 7). (7) The
result is the best individual in the population. It is usually advantageous to
use some redundancy in genes, and then the physical length of the genes can
be greater than one bit. Such a type of redundancy by shades was introduced
by Ryan [14]. To prevent degeneration and the deadlock in a local extreme, a
limited lifetime of individuals can be used. This limited lifetime is implemented
via a death operator [12], which represents something like a continual restart of
the GA. Many GAs are implemented on a population consisting of haploid indi-
viduals (each individual contains one chromosome). However, in nature, many
living organisms have more than one chromosome and there are mechanisms
used to determine dominant genes. Sexual recombination generates an endless
variety of genotype combinations that increases the evolutionary potential of
the population. Since it increases the variation among the offspring produced
by an individual, this improves the probability that some of them will be suc-
cessful in varying and often unpredictable environments. The modeling of sexual
reproduction is quite simple. The population is divided into two parts - males
and females. One parent from each part is selected for crossover. The sex of the
individual is stored in the special gene; this gene is not mutated. The sex of
the descendant is determined by a crossover of the sexual genes of parents, the
descendant is placed into the corresponding part of population. The replacement
scheme is associated with another problem. To ensure monotonous behavior the
incremental replacement (steady-state replacement) was introduced. We can use
least-fit member replacement where one (or more) elements with the worst fit-
ness is replaced, or we can replace randomly chosen element(s). Therefore, the
elitism brings a way to keep monotony while generational replacement is used.
One or several best individuals represent the elite. The whole elite is directly
taken into the next iteration.

So, the GA used in the paper for problem related computations uses rank-
ing selection, haploid chromosomes, shadows and limited lifetime, as described
above. We used uniform crossover and the probability of mutation of every gene
was 5%. Every 01 variable was stored in one gene having length of 3 bits. This
redundant coding uses the shades technique mentioned above. The population
size was 20 individuals; such a low value was chosen in relation to the computa-
tional complexity of evaluation of the fitness. The maximum number of iterations
was limited to 50. The maximum lifetime of individual was set to 5 iterations.

5 Computations and Results

Figure 2 represents an initial visualization of an example. The example shows
a distribution network: bold lines are existing edges and dash lines are possible
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Fig. 2. Input network structure for the WS case [4].

edges that can be switched on by 0–1 variables, nodes 1–14 present customers,
15,16 production nodes, 17–30 transition nodes.

The main idea of the hybrid algorithm is based on the solution of a sto-
chastic program for various sequences of the fixed 0 − 1 variables repeatedly for
each scenario. This extends the idea of [13] with modifications of the hybrid
algorithm in Sect. 3. So, the optimal objective function values are obtained
together with these sequences of zeros and ones. They serve as the input fit-
ness value plus elements of the populations for the GA instances that utilizes its
own above mentioned steps that are hidden within the GA structure. Updated
sequences of zeros and ones are generated by the GA and sent to the GAMS
through the updated $INCLUDE file and the computational loop continues until
a satisfactory improvement of the network design is obtained. For the purpose
of future comparison, we have utilized the test examples from [4]. The com-
parison between MINOS and of the proposed hybrid solution will be subject of
our future research, but we have already shown on other MINLP problems that
usage of exact solvers is not applicable in real (large) problems due to a huge
computational time [4]. Therefore, using of the hybrid approach has one more
reason in the MINLP’s.

Results are described in Fig. 3 where the thicknesses of lines represent fre-
quencies of usage in m scenarios, and hence, probabilities that variables xe

related to edges are non-zeros. The fixed lines are drawn as dash lines to empha-
size the role of edges generated by the WS computations. We may also see
that the stochastic demand usually requires new edges to bring the necessary
adaptation in the results. In comparison with the HN solutions (cf. [13]) it
can be done in a more flexible and cheaper way. Figure 3 also shows that only
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Fig. 3. Visualization of results for the hybrid algorithm for 100 scenarios.

Fig. 4. Visualization of results from GAMS for 1 scenario.
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suboptimality has been reached by computations for some scenarios, as extra
unnecessary edges are switched on by the GA runs (e.g., 5–28).

To compare the obtained results, due to extreme time requirements of finding
a traditional GAMS MINLP solution, we utilized one scenario case and provide a
visualization of the result in Fig. 4. We leave further comparison of time require-
ments as well as values of objective functions for our further research.

6 Conclusions and Further Research

The paper presents a WS reformulation of a TNDP with stochastic price-
dependent demands. The proposed mixed-integer nonlinear model is solved with
the original hybrid algorithm involving GA for the solution of the WS network
design problem. The previously introduced hybrid algorithm (see [4,13]) has
been modified and successfully tested. This reconfirms our conclusions in [13]
about the portability of the approach to other problems.

In our further research work, we plan to compare (or improve) the proposed
hybrid algorithm with similar ideas dealing with differential evolution, specif-
ically multi-chaotic success-history based parameter adaptation for differential
evolution [5], which is a novel version of the standard GA that, hopefully, may
achieve better computational results for our MINLP problems. Moreover, some
obvious suboptimalities (see, e.g., Fig. 3) produced by the GA can easily be
eliminated by appending a local search procedure to the GA run.

Similar mixed integer (nonlinear) stochastic programs may appear in many
application areas, including NDP [11], traffic networks [3] or waste management
problems [16]. Therefore, the suggested hybrid algorithm can be modified and
widely applied.
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16. Šomplák, R., Procházka, V., Pavlas, M., Popela, P.: The logistic model for decision
making in waste management. Chem. Eng. Trans. 35, 817–822 (2013)

17. Steenbrink, P.A.: Optimization of Transport Network. Wiley, New York (1974)
18. Tiratanapakhom, T., Kim, H., Nam, D., Lim, Y.: Braess’ Paradox in the uncertain

demand and congestion assumed stochastic transportation network design prob-
lem. KSCE J. Civil Eng. 1–10 (2016)


	WS Network Design Problem with Nonlinear Pricing Solved by Hybrid Algorithm
	1 Introduction
	2 Stochastic TNDP with Pricing Solved by WS Approach
	2.1 Pricing
	2.2 Stochastic Demand and the WS Approach

	3 Hybrid Algorithm for the WS Approach
	4 Description of the Utilized Genetic Algorithm
	5 Computations and Results
	6 Conclusions and Further Research
	References


