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Abstract. In this paper we investigate evolutionary mechanisms and
propose a new mutation operator for the evolutionary design of Combi-
national Logic Circuits (CLCs). Understanding the root causes of evo-
lutionary success is critical to improving existing techniques. Our focus
is two-fold: to analyze beneficial mutations in Cartesian Genetic Pro-
gramming, and to create an efficient mutation operator for digital CLC
design. In the experiments performed the mutation proposed is better
than or equivalent to traditional mutation.

Keywords: Cartesian genetic programming + Point mutation operator -
Circuit design - Combinational circuits

1 Introduction

The design of circuits is an important research field and the corresponding opti-
mization problems are complex and computationally expensive. The design of a
Combinational Logic Circuits (CLC) is based on the data from a truth table that
lists all possible combinations of input logic levels with the corresponding out-
put logic level. Given a certain truth table, it is possible to identify a CLC that
meets the conditions prescribed by the truth table using traditional techniques
and/or metaheuristics [5,9,14,16].

Several strategies for the design of combinational circuits have been reported
[2,5,6,9,14,16]. The aim of these approaches is to find a functional solution,
and to minimize the number of gates. Nowadays, CGP (Cartesian Genetic Pro-
gramming) [15] is one of the most efficient methods for evolutionary design and
optimization of digital combinational circuits [16,21]. CGP is a genetic program-
ming technique in which the programs are modeled as directed acyclic graphs
(DAG) and, thus, a large number of computational structures can be easily rep-
resented, such as CLCs [17]. That graph is represented by a matrix of potentially
connected elements.
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The literature shows that different function sets are used in the evolutionary
design. Koza [12] designed circuits using a small set of gates I' = {and, or, not}.
Miller et al. [15,17] and, recently, Goldman and Punch [10,11] used 4 types
of gates I' = {and, or,nand,nor}. Coello et al. [2-4,9] used 5 types of gates
I' = {and, not, or, zor, wire}. In [8], Gajda expanded the set of functions and
used 9 types of gates I' = {and, or, not, nand, nor, zor, wire, cy, c1 } where not
and wire are unary functions (taking the first input of the gate) and ¢ is a
constant generator with the value k.

Understanding how search operators interact with solution representation
is a critical step in order to design new techniques for improved search. There
have been a number of previous studies into various aspects of GP evolution.
For instance, [10,11] created methods to prevent wasted CGP evaluations and
methods to overcome CGP’s search limitations imposed by genome ordering [13].

The remainder of this paper is organized as follows: Sect.2 summarises
Cartesian Genetic Programming while Sect. 3 describes the proposed ideas. The
computational experiments are presented in Sect. 4, where the obtained results
are compared to those from the literature. Section 5 presents some discussions
and, finally, Sect.6 concludes the paper.

2 Cartesian Genetic Programming

In 1999, Miller [15] proposed a new form of Genetic Programming, called
Cartesian Genetic Programming, in which the programs are modeled as directed
acyclic graphs (DAG). Recently, [19] presented a CGP method that encodes
programs via cyclic graphs. CGP provides a great generality enabling the repre-
sentation of neural networks, circuits, and other computational structures [17].
Some features can be highlighted:

— CGP represents an individual using a matrix of processing nodes.

— Nodes contain genes describing what function they perform and how they are
connected to other nodes.

— DAGs are represented by a collection of nodes connected by directed edges.

— CGP has three parameters associated to the representation and mapping
process: the number of columns, the number of rows, and levels-back. levels-
back controls the connectivity of the graph by constraining which columns a
node can get its inputs from.

— Offspring are created by means of mutation.

— Offspring replace parents when they are better or have the same fitness value.

— The most common form of CGP uses a (u + A) reproduction strategy, where
1 parents generate A offspring and then, from the (z+ A) individuals, the top
u are taken to be parents in the next generation.

Figure 1a shows an example of the matrix representation adopted by CGP,
where I, I, Is are the primary inputs, O1, O9 are outputs, and each node repre-
sents an operation or its function (or, if, switch, ...). Figure 1b shows an example
where number of columns = 4, number of rows = 2, and levels-back = number
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of columns. The nodes can have their inputs connected to the outputs of any
nodes in the columns to the left of the current one or to a primary input. In this
case, nodes 5, 6, 9, 10, and 11 are neutral, having no influence on the phenotype.
These nodes are referred to as inactive. When a node is connected to an output
(directly or indirectly), it is called active, as nodes 4, 7, and 8. Inactive nodes
allow for genetic drift, as individuals can be mutated without changing their
fitness. Figures 1c and d show phenotypes associated with the outputs Oy, and
05, respectively.

so | D* DF D DT

(a) 2x4 CGP representation matrix with (b) CGP representation of an individual.
3 inputs and 2 outputs.

" .

o O L D2 pr O~

(c¢) Phenotype output O;. (d) Phenotype output Os.

Fig. 1. CGP representation

Modern CGP practice has mostly done away with rows and levels-back in
favor of rows =1 and levels-back as the sum of the number of columns with the
number of inputs.

2.1 Single Active Mutation (SAM)

CGP’s usual variation operator is a point mutation. However, different imple-
mentations can be found in the literature, making it hard to define a standard
version of the algorithm. For instance, in some papers [15] this operator chooses
a set number of genes at random to be mutated, while in other papers [20] each
gene can be mutated with a certain probability, allowing any number of genes
to be mutated at once.

When mutations occur in non-coding sections of the genotype, no modifica-
tion will appear in the phenotype and, consequently, both individuals (mutated
and non-mutated) have the same fitness. In order to avoid this situation Goldman
and Punch [10] proposed a method in which a single active gene is modified every
time an offspring is generated. This alternative will be referred to as “SAM” here.
SAM'’s iterative process generates an offspring by mutating randomly selected
genes until an active gene is changed. When this mutation operator is used, one
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can see that: (i) one active gene is mutated, (ii) inactive genes may be changed,
and (iii) no mutation rate needs to be specified by the user. As SAM achieved the
best results in the hardest test-problem from [10], here we adopted this mutation
operator as a baseline for all the computational experiments.

3 Description of the Biased Single Active Mutation

Traditionally, the mutation operator used in CGP is a point mutation operator,
in which a randomly chosen position in the matrix representation is replaced by
another randomly selected value. As the elements of the matrix are composed
by a function/operation and its inputs, two different modifications can occur.
When a function is chosen for gene mutation, then a valid value is the address
of any function in the function set (here called mutation type gate), whereas if
an input gene is selected to be modified, then a valid value is the address of the
output of any previous node in the genotype, or of any program input.

The proposed approach is based on the idea of analyzing the behavior of
the genotype during the evolutionary process for a given set of problems. Based
on this analysis, we create a bias to help direct gene mutation when applied to
other problems. For each run, every time the child has a fitness value better than
that of its parent (the child proceeds to the next generation), we say a beneficial
mutation occurred. Every time such improvement occurs, we check whether this
mutation occurred on the function executed by the parent. In this case, we store
the new and beneficial transition, from the previous (in the parent) to the new
function (in the child).

At the end of the evolutionary process, we create the frequency table of all
transitions, giving rise to a probability distribution. The creation of the prob-
abilities transition matrix is illustrated in Fig.2. This probability distribution
is utilized to guide the evolutionary process. Every time a function is to be
changed, this probability distribution will be used. This new mutation operator
proposed here is referred to as biased SAM.

Figure3 shows an example of the biased mutation, where a gate and is
selected to be mutated. The new value of that node is chosen according to the
probabilities present in the transition probabilities matrix. In this example, the
new gene in the child is a nor gate.

4 Case Study

4.1 Analysis of the Evolution

Initially four benchmark problems, taken from [1], were chosen where the suc-
cess of the mutations applied during the evolutionary process is studied as
explained in Sect.3. We used the expanded set of functions as in [8]: I" =
{and, or, not, nand, nor, xor, wire, ¢y, c1 }, We also used p = 1, A = 4, number
of rows=1, number of columns=100, and levels-back = number of columns, as
in [16].
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Fig. 2. Illustration of the generation of the transition probabilities matrix.

The test-problems are defined as:

Circuit 1: The first problem has four inputs and one output. The set F
indicates the rows of the truth table in which the outputs are equal to one:
F={o0,1,3,6,7,8, 10, 13}.

Circuit 2: The second problem has five inputs, one output, and
F=1{2,3,6, 7,10, 11, 13, 15, 18, 19, 21, 23, 25, 27, 29, 31}.

Circuit 3: The third problem has four inputs, three outputs, and
F,={0, 5, 10, 15}; Fb={1, 2, 3,6, 7, 11}; F3={4, 8,9, 12, 13, 14}.

Circuit 4: The fourth problem has five inputs, three outputs, and

F ={0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 28, 29, 30, 31};
F»,={0,2,4,6,7, 8,10, 12, 14, 15, 16, 18, 20, 22, 23 24, 26, 28, 30, 31};
F;={4, 5, 12, 13, 20, 21, 28, 29}.

A hundred independent runs were performed and the algorithm is terminated
when a correct circuit is found or the maximum number of evaluations is reached;
here, 100000 evaluations are allowed.

For each beneficial mutation, the exchanges are stored and frequency of occur-
rence of each exchange will be used in order to build a matrix of transition prob-
abilities. Figure4 presents a bar plot of the values stored in that matrix at the
end of the analysis. Notice that Fig.3 shows one particular case: the probabili-
ties for the and gate of a parent. The matrix of transition probabilities will be
used to guide mutation (biased mutation) in other problems as will be seen in
Sect. 4.2.
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Fig. 3. Example of the biased mutation operator. When a gate (function) is selected
to be mutated, then it is replaced by another one using a roulette wheel defined by the
transition probabilities matrix obtained by counting the beneficial mutations.

4.2 Designing a Combinational Logic Circuit

For a comparative study four benchmark problems studied by Goldman and
Punch [11] and widely used in the electronics literature [7,18] were chosen to
verify the effectiveness of our approach. All experiments were implemented in
MATLAB and for statistical analysis we used SPSS. The following values were
calculated and used in the comparisons: the number of times a feasible solution
is found (we call it a “hit”), the median of the number of objective function
evaluations required to obtain a feasible solution (called here “MES”), and the
number of beneficial mutations per thousand evaluations performed. Notice that
larger values of this ratio indicate a smaller number of objective function eval-
uations unnecessarily wasted and, consequently, an increase in the performance
of the method.
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Fig. 4. Values in the transition probabilities matrix obtained using the four benchmark
problems shown in Sect. 4.1, considering the beneficial mutations from parent to child
gates.

For all test-problems, we used u = 1, A = 4, performed 51 independent runs,
and adopted the function set I' = {and, or, not, nand, nor, xor, wire, cg, c1 }.
Also, for each problem, we employed the same number of nodes used by
Goldman and Punch [11]. To ensure that a feasible solution is always found
at the end of a run, a sufficiently large number of function evaluations (5000,
500000, 500000, 1000000, respectively for problems 1, 2, 3, and 4) is pre-defined
for each problem. Goldman and Punch [11] were able to solve those problems in
95 % of the runs with 1487, 42278, 74939, and 611034, evaluations respectively.
The maximum number of evaluations allowed here are at least 60 % higher than
those required in [11] to solve the problem.

The results of each type of mutation are shown in Table1l. The first line
for each problem shows the control configuration corresponding to SAM, as
described in Sect. 2.1.

Problem 1: The first problem, 3-Bit Parity, is considered very simple, but is
the most common test-problem in the CGP literature [11,17,22,23] and may
help understand how the mutation changes affect the results. The topology con-
figuration was number of rows =1, number of columns =500, as chosen in [11].
It can be seen that the biased mutation converges to a feasible solution with
a smaller number of evaluations. The proposed technique obtained MES = 269
while the control configuration has MES =413.
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Table 1. Comparison between standard and biased SAM for the four test-problems
used here. “Hits” represents the number of times that a given approach found a feasible
solution. The number of times that a beneficial mutation occurs every 1000 evaluations
is denoted by “Beneficial Mutation/1000 evals”. “MES” is Median Evaluations to
Success. The p-values calculated with the Mann-Whitney U test over the MESs are
also presented.

Circuit Single Hits | Beneficial MES Confidence p-value
active mutation | (%) | mutation/1000 evals | MES interval

Bit Standard 98 | 15.7 413 | 285 .. 469 -
Parity Biased 100 | 15.9 269 | 189 .. 393 0.049
16 to 4 bit | Standard 100 1.6 19473 | 16673 .. 22953 -
encoder Biased 100 1.9 16153 | 14525 .. 20837 0.103
4 to 16 bit | Standard 90 1.0 332813 | 293501 .. 360637 | —
decoder Biased 100 2.1 165665 | 145681 .. 184161 | 0
3-Bit Standard 76 1.3 559385 | 464745 .. 744909 | —
Multiplier | Biased 88 1.6 435781 | 382125 .. 550645 | 0

Problem 2: The second problem is the 16-4 bit encoder, which can be
found in [10,11]. The topology configuration was number of rows=1, num-
ber of columns=2000, as chosen in [11]. The proposed technique obtained
MES = 15951 while the control configuration has MES = 19469.

Problem 3: The third problem, is the 16-4 bit decoder proposed in [10,11]. The
topology configuration was number of rows =1, number of columns=1000, as
chosen in [11]. The proposed technique obtained MES = 161889 while the control
configuration has MES = 325193.

Problem 4: The fourth problem is the 3-bit multiplier, which can be found
in [10,11]. The topology configuration was number of rows=1, number of
columns =5000, as in [11]. This problem is very difficult by comparison to the
other ones. The proposed technique obtained MES = 430487 while the control
configuration has MES = 559385.

5 Discussion of the Results

Analyzing the transition probability matrix extracted from the four benchmark
problems in Sect. 4.1, one can see that the most important modification during
mutations is to change a nand gate in the parent to a zor gate. On the other
hand, relatively fewer cases were observed in which a beneficial mutation arises
from changing a not gate into an or gate. Thus, the reinforcement of the occur-
rence of the first exchange, and the avoidance of the second one can potentially
improve the performance of the algorithm.

It is interesting to note in Fig. 4 that there is no gate to be preferable in the
mutation for all cases. The probability of the transition varies with the gate to be
modified. For instance, the zor gate has a higher probability value when nand or



A Novel Efficient Mutation for Evolutionary Design of CLC 673

or gates are being modified while it presents a lower probability of improvement
when replacing wire or not gates.

When the entire transition probabilities matrix is considered in the search,
the results (presented in Sect.4.2) are better than those obtained by the base-
line (SAM) version, for all test-problems used here. Thus, one can see that the
extraction of knowledge is possible and useful in improving the performance
of CGP.

Finally, notice that beyond the decrease in the number of objective function
evaluations to reach a feasible solution, the ratio between the average number of
beneficial mutations and the average number of evaluations to success increased,
showing that the efficiency of the search is also improved for all problems tested.

6 Conclusions

This paper proposed a new mutation for automatic design of combinational
logic circuits via Cartesian Genetic Programming. Through the analysis of the
evolutionary process in a given set of problems it was possible to gain knowledge
and then use it to guide the search. The incorporated knowledge about the
performance of the mutation operator constitutes an important step towards
increasing the power of CGP as a design tool.

Experimental results confirmed the superiority of the new biased mutation
operator over a standard mutation in reducing the number of fitness evaluations
in the design of combinational logic circuits.

Nevertheless, a more in-depth study of the evolutionary mechanisms and ben-
eficial mutations remains as a promising research area. The rationale behind the
design of the biased Single Active Mutation applied here to circuit design, is not
restricted to this type of application; other design domains can be investigated.
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