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Abstract. This paper presents the Voronoi diagram-based evolutionary
algorithm (VorEAl). VorEAl partitions input space in abnormal/normal
subsets using Voronoi diagrams. Diagrams are evolved using a multi-
objective bio-inspired approach in order to conjointly optimize classifi-
cation metrics while also being able to represent areas of the data space
that are not present in the training dataset. As part of the paper VorEAl
is experimentally validated and contrasted with similar approaches.

1 Introduction

Anomalous Internet traffic detection is a major question of computer network
security. Intrusion detection systems (IDSs) [9] have proposed with the intention
of tackling this issue. They are meant to protect a network by providing a line of
defense that is able to detect and react to network attacks. Two main approaches
are used when building an IDS: (i) misuse-based and (ii) anomaly-based detec-
tion. While the former focuses on detecting attacks that follow a known pattern
or signature, the latter is interested in building a model representing the sys-
tem’s normal behavior while assuming all deviated activities to be anomalous
or intrusions. Because of that fact anomaly detection has received increasing
attention in the recent past.

Anomaly detection has been addressed with different approaches (see [2] for
a survey). Among nature-inspired approaches artificial immune systems (AISs)
[7] have received an special attention.

This paper proposes the Voronoi diagram-based evolutionary algorithm
(VorEAl). VorEAl is inspired on AISs and the representations that had been pro-
posed for evolutionary shape design consolidating previous progresses made in
this direction [8]. Its main distinctive feature is that it evolves Voronoi diagram-
based representations for normal/abnormal regions of the search space. Such
representation offers a flexible and compact alternative to some common rep-
resentations used in AIS such as hyper-spheres and hyper-rectangles. VorEAl
applies a multi-objective approach that takes into account the detection accu-
racy and other especially devised volume-based methods that promotes the emer-
gence of solutions that also adequately represent areas of the input space where
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no normal data has been received and, therefore, should represent anomalies.
As in any multi-objective approach, the algorithm produces a set of trade-off
solutions. VorEAl applies a committee approach that is based on the best (in
term of a priori given set of preferences) subset of those solution.

The paper is organized as follows. Section 2 presents the context of AIS
and some existing approaches to anomaly detection. Section 3 introduces the
Voronoi representation for abnormal and normal input subsets, together with
the variation operators and objective functions used to evolve it and VorEAl as
a whole. Section 4 introduces our methodology for the experimental validation
of VorEAl, also presenting the results of the study and comparing them with
other approaches from the literature. Finally, Sect. 5 discusses the results and
sketches some further research directions.

2 Foundations

There has been a consistent interest by the community on proposing nature-
inspired approaches to anomaly detection. In this context, AISs have attracted
attention as they embody an analogy to the biological immune system. They
are particularly appealing for anomaly detection problems as they capture the
ability of the biological system of telling apart normal body cells from pathogens.
That is, from a computational perspective, they create a model that is able to
discriminate between normal (self) and abnormal (non-self) objects. This feature
make AISs specially suited to be applied in the context of anomaly-based IDSs.

In order to extend AISs’ performance it is necessary to apply algorithms
that combine a powerful representation capacity as well as the possibility of
adequately adapting that capacity to meet the problem characteristics.

Voronoi diagrams are geometrical constructs that were known by the ancient
Greeks. Any set of points (aka Voronoi sites) in some n-dimensional Euclidean
space E defines a Voronoi diagram, i.e., a partition of that space into Voronoi
cells: the cell corresponding to a given site S is the set of points whose closest
site is S. The boundaries between Voronoi cells are the medians of the [SiSj ]
segments, for neighbor Voronoi sites Si and Sj . Though originally defined in
two or three dimensions, there exist several algorithmic procedures to efficiently
compute Voronoi diagrams in any dimension.

Voronoi diagrams offer a compact representation for shapes (surfaces in 2D,
volumes in 3D, for instance), by attaching to each Voronoi cell (or, equiva-
lently, to the corresponding Voronoi site), a Boolean label. The resulting Voronoi
diagram is a partition of the space into 2 subsets: the “true” cells are the
shape/volume, and the “false” cells are the outside of the shape/volume. The
genotype is here a (variable length) list of labeled Voronoi sites, and the pheno-
type is the corresponding partition in the space into two subsets. More generally,
any piece-wise constant function on the underlying space can be represented by a
similar representation by using real-valued labels. Such representation has been
successfully used in the context of Evolutionary Optimum Design [5,10]. In par-
ticular, it has been demonstrated that the local complexity of the representation
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can also be adjusted by evolution: in regions of the space where the shape has
a complex boundary, several Voronoi sites will be used, whereas only a few of
them will be necessary elsewhere.

In the context of classification, the target phenotypes are partitions of the
parameter space into positive and negative examples (in the case of 2 classes),
and can hence also be represented by Voronoi diagrams with Boolean labels —or
with labels taken from a finite alphabet in the case of more than 2 classes.

3 The Voronoi Diagrams-Based Evolutionary Algorithm

We now discuss the building blocks of VorEAl. In particular, we present variation
operators, the possible strategies used for evaluating the individuals and how
these elements are assembled together to form the algorithm.

3.1 Variation Operators

The genotypes of Voronoi representations is a variable length list of Voronoi sites
(S1, . . . , Sp), with p ∈ [Pmin, Pmax], where each site is defined by its n coordinates
in E . Each site S has an associated label S.� that determines how a point that
falls within the corresponding cell is classified.

Fig. 1. Mutation of a Voronoi diagram.
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Mutation Operator. Several mutation operators can be designed for such a
variable-length representation.

– At the individual level, a Voronoi site can be added, at a randomly chosen
position, with a random label; or a randomly chosen Voronoi site can be
removed.

– At the site level, Voronoi sites can be moved around in the space – and the
well-known self-adaptive Gaussian mutation has been chosen here, inspired
by Evolution Strategies (see (1) below); or the label of a Voronoi site can be
changed.

In the self-adaptive Gaussian mutation [11], each coordinate x of each Voronoi
site also “carries” its own variance σ that is used for its Gaussian mutation.
Coordinate x undergoes Gaussian mutation with variance σ while σ undergoes
a log-normal mutation with learning rate η as follows:

x ← σN (x, 1) and σ ← σeηN0,1 (1)

The different mutation operators are applied according to different probabil-
ities, following the procedure described in Fig. 1.

Fig. 2. Crossover operator for Voronoi diagrams.

Crossover Operator. The crossover operator for Voronoi representation should
not simply exchange some Voronoi sites between both parents, but should respect
the locality of the representation. Voronoi sites that are close to each other should
have more chance to stay together than Voronoi sites that are far apart. This
is achieved by the geometric crossover that operates on two (randomly selected)
parents by creating a random cutting hyperplane, and exchanges the Voronoi
sites from both sides of the hyperplane. The Voronoi diagrams are of course
reconstructed after the crossover. This procedure is described in detail in Fig. 2a.
A two-dimensional example is given in Fig. 2b.
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3.2 Objectives and Fitness Assignment

Anomaly detection can be posed as a particular case of classification problem
where data items must be tagged either as “normal” or “anomalous”. That rely-
ing on a dataset Ψ =

{
x(i), y(i)

}
where, without loss of generality we can state

that x ∈ R
n and y(i) ∈ {normal; anomaly} obtain a classifier that correctly

detects instances that correspond to each of the two categories. Because of this
fact the existing metrics devised to assess the quality of a classification algo-
rithm are also applicable in this context. For this particular problem, the most
relevant metrics are accuracy, recall and specificity, although many more could
also be of use. Accuracy seems the best choice in the general case, as one wants
to correctly identify all examples. But when dealing with anomalies, the dataset
is generally highly imbalanced, as normally there are fewer anomalous instances
than ‘normal’ ones. If only the classification accuracy is used, the error contri-
bution of the anomalies will be reduced and hence the model will be biased to
not regard them.

Furthermore, as already mentioned, the anomaly detection problem requires
that the classifier is not only able to correctly classify the “normal” and “anom-
alous” instances present in the training dataset but is also capable of detecting
when a given input falls in an area that was not covered by data of the training
set and, therefore, also can be interpreted as an anomaly.

It is possible to prompt the Voronoi diagrams (individuals) to represent the
known data in a form as compact as possible by expressing that as the relation
between the volumes of the Voronoi cell and the convex hull of the training data
that it contains. Let I = {Si, i = 1 . . . nI} be a Voronoi diagram, and, for each
cell Ci, let vi ∈ R be its volume and Di the set of data points it contains, i.e.,
Di = {x ∈ Ψ ; d(x, Si) ≤ d(x, Sj)∀i �= j}, d being the n-dimensional Euclidian
distance. We can then define the individual compactness as the sum, for each
cell, of the ratio of the volume of the convex hulls of Di and the volume of the
cell,

C(I) =
{∑

i
volume(convex hull(Di))

vi
if |Di| > n,

0 in other case.
(2)

It could be hypothesized that the previous formulation can be improved by
adding a multiplicative term that counts the number of elements in Di, resulting
in the multiplicative compactness

Cmult(I) =
{∑

i (|Di| − n) volume(convex hull(Di))
vi

if |Di| > n,

0 in other case.
(3)

In both cases, maximizing the compactness will produce cells that contain the
data in a form as tight as possible. Those compactness objectives can be comple-
mented by one that promotes the existence of empty cells that represent areas
of the input domain that are now present in the training data. Such objective
would take care of sites with small Di’s and promote that they become empty
as the evolution takes place. A form of representing this is by computing the
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total volume of cells with an anomaly label of an individual and rate it by the
number of elements it contains,

EV(I) =
∑

i,Si.�=anomaly

vi

1 + 2 ln(|Di| + 1)
. (4)

Consequently, it is obvious that it is necessary to jointly address all of those
objectives. Therefore, a multi-objective optimization approach will empower the
algorithm with the capacity to address all the requirements of the task at the
same time.

3.3 Algorithm Description

VorEAl consolidates the previous components as an algorithm that constructs a
classification model. The algorithm starts by creating an initial random popula-
tion P0 of npop individuals. At a given iteration t, individuals in the population
Pt are then mutated and mated using operators described above and thus pro-
ducing an offspring population Poff that consists of noff individuals. At this point,
individuals that have not yet been evaluated are presented with the dataset and
the values of the different objective functions are calculated. In this work, we
compute the accuracy, recall and specificity, but it should be noted that others
are available. From the union of Pt and Poff, the best npop are selected using
the non-dominated sorting selection of NSGA-II [3].

This process repeats until the stopping criterion of the algorithm is met.
When that happens, the algorithm has a final population Pfinal from which the
best individual(s) can be selected to represent the ‘self’ of the AIS. This a non-
trivial task as it implies taking into account the different conflictive objectives. In
this work, we select a committee of individuals Pcommittee ⊆ Pfinal that contains
the ρ-percent of Pfinal with the highest accuracy. Hence, the classifier returns
the most voted decision among the members of Pcommittee.

Fig. 3. Training and testing datasets. Test set anomalies present in the test datasets
are generated using the procedure described in Sect. 4.
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4 Experimental Study

The previous discussion and proposal must be complemented by a set of exper-
iments that establish the validity of VorEAl and studies the impacts of the
different components presented. That is the focus of this section.

One of the main questions regarding VorEAl is at what point a multi-
objective affinity function would actually generate better results at an admissible
cost. It could be argued that there exists the possibility that adding more objec-
tives would just make the search process more complex and resource demanding.

An important matter to be clarified was the impact of each of the objectives
presented in previous section. For that reason different combinations were tested.
In particular, we tested accuracy and compactness (a/c); accuracy, compactness
and total empty volume (a/c/t); accuracy and multiplicative compactness (a/m)
and accuracy, multiplicative compactness and total empty volume (a/m/t).

In order to provide grounds for comparison with similar approaches as well
as well-known approaches, other methods were included in the experiments.
In particular, we included the negative selection algorithm (NSA) [6] using
both variable-sized hyper-spheres and hyper-rectangles. For fair comparisons,
we applied the NSA+

sp and NSA+
re in which non-self training samples are subse-

quently used to enrich the detector library generated by NSA.
Similarly, we have included in the experiments two well-known classifiers:

one-class vector machines (SVMs) [12] and the näıve Bayes classifier.

Table 1. Summary of the outcome of the statistical hypothesis tests for each problem
and performance indicator. When an algorithm in the row has been significantly better
than the one in the column the corresponding cell is marked with a “+”. If it has been
worst then the cell contains a “−”. Cases where no significant difference was established
are identified with a “∼”.
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The experiments involved six classification benchmarks problems: the ‘two
spiral’, ‘crescent and full moon’, ‘half densities’, ‘corners’, ‘outliers’ and ‘cluster
in cluster’ problems. They have the advantage that they can be visualized in 2D
while still posing a substantial challenge to the algorithm. One key element that
must be addressed is the ability of the method to detect anomalies that were
present in the original dataset and also those that were not present. Six tests were
prepared with that goal in mind by adding random anomaly data in the areas
that did not had any data in the training dataset. The resulting training and test
datasets can be observed in Fig. 3. Besides fixing these parameters we limited the
population to 100 individuals and ran the algorithms for 500 generations. The
rest of the parameters are tuned using a grid search procedure on a reduced-size
problem. The same parameters were used for all problems. The mutation of the
parameters were ps = 0.5, pf = 0.5, pt = 0.1, p+ = 0.2, p− = 0.1 and η = 0.5,
while the mating probability was 0.5, the minimum and maximum number of
sites in an individual was set to 20 and 100, respectively and the committee
selection percentile (ρ) was set to 5 % of the population.

The stochastic nature of the algorithms being analyzed calls for the use of
an experimental methodology that relies on statistical hypothesis tests. Using
those tests, we are able to determine in a statistical sound way if one algorithm
instance outperforms another. The topic of assessing stochastic classification
algorithms is studied in depth in [4]. There, it is shown that the Bergmann–
Hommel procedure is the most suitable for our class of problem. In all cases, we
have used a base level of significance of 0.05 and we run the same experiment
instances 50 times. The results of this experiments are shown as box plots in
Fig. 4. It can be inferred from those plots that the three-objective form of with
accuracy, multiplicative compactness, and total empty volume VorEAl yielded
the best results.

Fig. 4. Box plots of the experimental evaluations on the anomaly detection test sets.
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Fig. 5. Summaries of the statistical tests and an illustrative example. (Color figure
online)

When many tests are carried out, a comprehensive analysis of the results is
rather difficult as it implies cross-examining and comparing the results presented
separately. Consequently, we present them in summarized form in Table 1. It
should be noted that experiment parameters and results are available online
at http://lmarti.com/VorEAl. To further simplify the understanding of results,
why we decided to adopt a more integrative representation like the one proposed
in [1]. Figure 5 summarizes the outcome of the hypothesis tests by grouping them
by metric and problem, as explained in the previous section. Here it is clearly
visible how VorEAl with multiplicative compactness and total empty volume
objectives is generally able to yield better results. Finally, as an illustrative
example, we show in Fig. 5c an example of an evolved Voronoi diagram.

5 Discussion and Conclusion

In this paper we have presented VorEAl, a multi-objective evolutionary algo-
rithm that relies on Voronoi diagrams for representation. VorEAl has been
devised with the problem of anomaly detection in mind. The experimental results
obtained as part of this work point out that this is a promising direction of work.
However, there are many areas that should be further studied and explored. From
an algorithmic point of view, we should explore other classification objectives
(metrics).

It is important to try other multi-objective fitness assignments, like those
based on multi-objective performance indicators or reference points. This last

http://lmarti.com/VorEAl
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approach is of particular interest as, as we already mentioned, in our case we
have an a priori known ideal solution that can be used to guide the search. In
parallel, work should the done in understanding and reducing the computational
complexity of the algorithm. In this direction, we are already working on creating
approximative versions of the volume meant to decrease the computational cost
of the computation of the objective functions.

Acknowledgements. This work has been funded by the project PIA-FSN-P3344-
146479. Authors wish to thank the reviewers for their fruitful comments.
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