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Abstract. Satellite imagery and remote sensing provide explanatory
variables at relatively high resolutions for modeling geospatial phenom-
ena, yet regional summaries are often desirable for analysis and action-
able insight. In this paper, we propose a novel method of inducing spatial
aggregations as a component of the machine learning process, yielding
regional model features whose construction is driven by model predic-
tion performance rather than prior assumptions. Our results demonstrate
that Genetic Programming is particularly well suited to this type of fea-
ture construction because it can automatically synthesize appropriate
aggregations, as well as better incorporate them into predictive models
compared to other regression methods we tested. In our experiments we
consider a specific problem instance and real-world dataset relevant to
predicting snow properties in high-mountain Asia.
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1 Introduction

Regional modeling focuses on explaining phenomena occurring at a regional, as
opposed to site-specific or global scales [11]. Regional models are of interest in
many remote sensing applications, as they provide meaningful units for analysis
and actionable insight to policymakers. Yet satellite imagery and remote sens-
ing provide variables at relatively high resolutions. Consequently, studies often
involve decisions concerning how to integrate this information in order to model
regional processes. Considering measurements at each individual spatial unit as
a separate model feature can result in a high dimensional problem in which high
variance and overfitting are major concerns. For this reason, spatial aggregation
is often applied in this setting to uniformly up-sample variables to be consistent
with the response. Although in averaging variables across all spatial units in the
region, we discard information which could in turn diminish prediction accuracy
and our understanding of underlying phenomena.

Rather than strictly incorporating individual spatial units or uniformly up-
sampling, it might instead be beneficial to construct features of a regional model
using particularly important subsets of geographical space. In this paper, we
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move away from uniform up-sampling aggregations towards more flexible and
interesting aggregation operations predicated on their subsequent use as fea-
tures of a regional model. We propose a novel method of inducing spatial aggre-
gations as a component of the machine learning process, yielding features whose
construction is driven by model performance rather than prior assumptions.

In experiments designed to explore these techniques, we consider a specific
problem and real dataset: estimating regional Snow Water Equivalent (SWE)
in high-mountain Asia with satellite imagery. Improved estimation of SWE in
mountainous regions is critical [3] but is difficult due in part to complex charac-
teristics of snow distribution [2].

2 Methods

We take a comparative approach to the SWE problem, considering ridge regres-
sion, lasso, and GP-based symbolic regression!. For each regression model, we
consider a filter-based method of feature construction in addition to a second,
more dynamic method. For linear regression, we incorporate a wrapper approach
in which constructed features and the regression model are induced in separate
learning processes, with feedback between the two. For symbolic regression, we
use an embedded approach where constructed features and the regression model
are induced simultaneously over the course of an evolutionary run.

The Dataset. The SWE dataset? is derived from data collected by NASA’s
Advanced Microwave Scanning Radiometer (AMSR2/E) and Moderate Reso-
lution Imaging Spectroradiometer (MODIS) for March 1 - September 30, in
2003 - 2011, over an area that spans most of the high mountain Asia. We have
three explanatory variables measured daily across a 113 x 113 regular grid for
1935 days: (1) mean and (2) standard deviation of sub-pixel Snow Covered Area
[4,10], as well as (3) an estimate of SWE derived from passive microwaves [15].
Our response variable is regional SWE, an attribute of the entire study region,
represented as a single value for each of the 1935 days. The response was “recon-
structed” by combining snow cover depletion record with a calculation of the
melt rate to retroactively estimate how much snow had existed in the region [9)].

2.1 Regression Models

Ridge regression [5] is similar to ordinary least squares (OLS) but subject to a
bound on the Ls-norm of the coefficients. Because of the nature of its quadratic
constraint, ridge regression cannot produce coeflicients exactly equal to zero
and keeps all of the features in its model. Lasso (Least Absolute Shrinkage and
Selection Operator, [16]) modifies the ridge penalty and is subject to a bound

! The source code necessary for reproducing our results is available at https://github.
com/skriegman/ppsn_2016.

2 Raw satellite data was pre-processed by Dr. Jeff Dozier (UCSB) using previously
reported techniques and is available upon request.


https://github.com/skriegman/ppsn_2016
https://github.com/skriegman/ppsn_2016

Evolving Spatially Aggregated Features from Satellite Imagery 709

on the Li-norm of the coefficients. The geometry of this L;i-penalty has a strong
tendency to produce sparse solutions with coefficients exactly equal to zero. In
many high dimensional settings, lasso is the state-of-the-art regression method
given its ability to produce parsimonious models with excellent generalization
performance. For both lasso and ridge regression, the parameter constraining
the coefficients is set through cross-validation.

Genetic Programming (GP, [7]) is a very flexible heuristic technique which
can conveniently represent free-form mathematical equations (candidate regres-
sion models) as parse trees. GP’s inherent flexibility is well-suited for our particu-
lar problem because it can efficiently express spatial aggregations and seamlessly
combine them into the learning process with minimal assumptions. Furthermore,
the “white box” nature of GP may provide physical insights about this complex
problem that is currently lacking, as in other domains [1,13].

To search the space of possible GP trees we use a variant of Age-Fitness
Pareto Optimization (AFPO, [12]). AFPO is a multiobjective method that relies
on the concept of genotypic age, an attribute intended to preserve diversity. We
extend AFPO to include an additional objective of model size, defined as the
syntactic length of an individual tree. The size attribute protects parsimonious
models which are less prone to overfitting the training data. The GP algorithm
therefore identifies the Pareto front using three objectives (all minimized): age,
error (fitness), and size. For the fitness objective, we use a correlation-based
function rather than pure error, and define foor = 1 — |¢(8, s)|, where ¢(5 — s)
denotes Pearson correlation between model predictions (§) and actual values of
our respounse (s), regional SWE. Correlation has recently been shown to outper-
form error-based search drivers given that if a model makes a systematic error it
could be easily eliminated by linearly scaling the output and therefore should be
protected [14]. Accordingly, for all GP implementations, we apply a linear trans-
formation after fcogr -driven evolution has concluded, by using an individual
program (model) output as the single input of OLS on the training data.

Our implemented GP experiments used ramped half-and-half initializa-
tion with a height range of 2—6 and an instruction set including unary
({sin, cos, log, exp}) and binary functions ({x,+,—,/}). One thousand individ-
uals in the population are subject to crossover (with probability 0.75) and muta-
tion (with probability 0.01) over the course of 1000 generations. There is a static
limit on the tree height (17) as well as the tree size (300 nodes). Each experi-
ment consists of 30 evolutionary runs, from which the best model (lowest train-
ing foor) is selected. The selected model is then transformed using OLS, and
subsequently validated using unseen test data.

Standard Methods. Ridge regression, lasso, and GP may be performed on the
raw data using each variable at each individual spatial unit as a separate feature.
We denote these methods as Standard Ridge (SR), Standard Lasso (SL) and
Standard GP (SGP). SR, SL and SGP each have access to 113 x 113 x 3 = 38307
features, but only 1720 observations in each fold of data.
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2.2 Feature Construction Methods

Feature construction is a well studied problem and the utility of genetic pro-
gramming for feature construction has been recognized in many previous studies
[8]. The key difference in our work from this past work is the nature of the data
being modeled. We presume that there exist spatial autocorrelations of varying
size and shape that, if aggregated to improve the signal to noise ratio, yield
features supporting more accurate predictions.

In a regional model, we can construct features by aggregating higher dimen-
sional variables across space. However, it is not entirely clear what kind of aggre-
gations are useful as features of a predictive model. Grouping variables based on
similarity or dissimilarity does not necessarily produce useful regional features.
In this paper, we make an assumption about the importance of distance and
continuity in effective spatial aggregations, based on Tobler’s first law of geog-
raphy [17] which states that “everything is related to everything else, but near
things are more related than distant things.” Accordingly, we limit the space of
possible spatial aggregations to be an average of values within a circular spatial
area defined by its centerpoint and radius. However, where to aggregate, how
many aggregations to perform, and how to combine the aggregates must still be
determined manually or decided during model optimization. We view filters and
wrappers as intermediary steps in relaxing assumptions towards our embedded
approach, which automates all three of these aspects.

The Filter Method. Filter-based feature construction methods transform or
“filter” the original variables as a preprocessing step, prior to modeling. Our fil-
ter for the SWE problem represents a static up-sampling transformation of the
original variables. Each variable is decomposed in space by a grid of overlapping
circles® of equal radii centered on a square lattice pattern of points (see Fig. 1a, c
and e for example). Each constructed feature corresponds to the average (arith-
metic mean) of a particular variable sampled within a particular circle of space.
Units that reside in an overlapping region of two separate circles are included in
the calculation of both features. Since there are three explanatory variables in
the SWE dataset, an R x R grid corresponds to p = 3R? constructed features.
The constructed features are then used as inputs for ridge regression, lasso, and
GP, which we will refer to as Filtered Ridge (FR), Filtered Lasso (FL), and Fil-
tered GP (FGP). We will also specify the value of R used in a particular model
instance as a subscript, e.g. FRy5 denotes Filtered Ridge with R=15. We con-
sider filters with R € {1,2,...,20}, however note that the standard methods are
essentially filters with R = 113, albeit with the non-overlapping square pixels.

The Wrapper Method. Wrapper-based feature construction methods incor-
porate feedback from the fit of the model. We implement wrappers around both
ridge regression and lasso in order to enable the circular sampling regions to

3 The shape of circles are in reality so-called “small circles,” as they lie on the surface
of earth.
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define their own center and radius. The circles are no longer fixed on a grid with
a predetermined size. Instead, each constructed feature is uniquely parameter-
ized by the coordinates of a center unit (x,y), as a latitude and longitude tuple,
and a radius 7, as a single value floating point number in km. The center can be
any spatial unit in the region, including one at the edge of the raster. The radius
is restricted to be within 0 and 1000 km, which is flexible enough to contain only
a single unit or span the entire region (see Fig. 1b and d for example).

Wrapped Ridge (WR) and Wrapped Lasso (WL) separately use a ridge/lasso-
driven hill climbing algorithm to construct features that minimize Mean Absolute
Error (MAE), i.e. 237 | |§; — s;|, where s; is the actual value of our response
(regional SWE) and §; is output predicted by the model over n observations.
The algorithm uses the same number of circles for each of the three variables,
initializing their parameters (x,y,r) randomly. For 1000 iterations, a single con-
structed feature (circle) is randomly selected and subject to a Gaussian mutation
on one of its parameters with standard deviation equal to 25% of the radius
and centered at zero. A new ridge/lasso model is then refit on the mutated set
of features using a random subset of data sampled without replacement. If the
mutation lowered model error on the complementing set of training data left out,
then the change is accepted. Otherwise, the mutation is undone. If a proposed
mutation to the radius would take it outside the restricted range of 0 — 1000
km, then it is “bounced-back” the distance it would have exceeded the bound-
ary. For example, a random mutation that would result in a radius of 1200 km,
becomes 1000 — (1200 — 1000) = 800 km. Thirty restarts are used from which
the best model based on training data is selected. We consider R € {1,2,3,4}
for wrappers corresponding to 3 x R2 features which really means 3 x 3 x R?
modifiable parameters.

The Embedded Method. By using GP, we can allow for flexibility with
respect to the placement and number of aggregations as well as the way in
which they are combined to form a model. However, stochastic optimization
methods like GP cannot be easily “refit” in the same manner as deterministic
algorithms like ridge regression or lasso. Therefore using wrapper approach for
GP is computationally infeasible. Instead, modifications to aggregated features
are implemented through mutation-based operators.

In Genetic Programming with Embedded Spatial Aggregation (GPESA)
introduced here, our constructed features are represented as parameterized tree
terminals, with parameters (z,y,r). Constructed features are randomly initial-
ized in the same manner as the wrapper method, but separately for each termi-
nal of each individual in the population. Greedy Gaussian mutations to the
parameters (z,y,r) of a randomly selected constructed feature occur in the
population with 20 % probability, each generation. Mutations to r have mean
zero and a standard deviation of 25 %, subject to the bounce-back rule. Simi-
larly, mutations to (x,y) have mean distance zero and a standard deviation of
0.257. For 25 iterations, greedy mutations modify the parameterized terminals
within a particular GP tree. A modification is accepted if it successfully reduces
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average error (fcor) on random subsets of training data sampled with replace-
ment. Aside from the stochastic application, another key difference between the
wrapper method’s hill climbing algorithm and the GPESA’s greedy mutations is
that the overall regression model stays the same between mutations rather than
being “refit” after each mutation.

Validation. In order to validate the generalization of models we partition the
dataset into nine overlapping folds. Each fold corresponds to leaving out one
year for testing and training on the remaining eight (using years 2003—2011).
We use MAE on the unseen test data as a metric to assess model performance.
To account for a difference in scale across any set of features, all input model
features are standardized over time by removing the mean and scaling to unit
variance. This means that as wrapper and embedded methods construct new
aggregations, the sampled data is scaled over time prior to being averaged over
space. Since our goal is near-real-time estimation for a future day, the training
values of a feature’s mean and variance are reapplied when scaling the same
feature in validation.

3 Results

Table 1 displays the test error of each valid regression and feature construction
method combination. For filters and wrappers, only the best performing model
is displayed and we indicate the particular value of parameter R as a subscript.
Since the ultimate goal of our paper is to synthesize a method better than
existing approaches, we must statistically compare GPESA to SL, the state-
of-the-art linear regression/variable selection algorithm. The null hypothesis of
interest here is that of no difference between GPESA and a SL. Therefore we
perform yearly Wilcoxon signed rank tests [6] comparing GPESA to SL with
Bonferroni correction across the nine years. For five out of the nine test years,
GPESA is significantly better than SL, while for the other four years there is no
significant difference with SL.

Through displaying only the best testing filters and wrappers, we aim to
focus speculation about GPESA performance through a conservative lens. Yet
we ultimately view filters and wrappers as intermediary steps “working up”
to GPESA. Accordingly, the best test error better represents a bound on
the potential performance of a particular intermediary method even though it
may not be possible to achieve such performance through a parameter sweep
based on the training data. And indeed, across all methods tested, GPESA
reported the lowest recorded median mean-absolute error within all but two years
(7 of 9) where it has the second lowest.
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Table 1. Median mean-absolute error with corresponding standard errors in parenthe-
ses. Only the best testing filter- and wrapper-based results (choice of R) are displayed.
We explicitly compare GPESA with the state-of-art, SL. Bold values indicate signifi-
cance (at 0.05 level with Bonferroni correction) under a Wilcoxon singed rank test in
which the null hypothesis asserts that distribution of the differences between GPESA
and SL is symmetrically distributed about 0.

Year SR ! SL i SGP  FRy FLig FGPy WR; WL; | GPESA :

2003 0.86 :0.51 0.35 (0.14) 0.50 0.46 0.44 (0.08) 0.43 (0.10) 0.49 (0.09) : 0.29 (0.09):
2004 0.47 :0.30  0.32 (0.10) 0.34 0.29 0.26 (0.05) 0.37 (0.16) 0.35 (0.16) : 0.17 (0.05):
2005 0.95 :0.44° 0.50 (0.13) 0.61 0.40 0.52 (0.06) 0.58 (0.11) 0.63 (0.09) : 0.32 (0.07):
2006 0.66 : 0.27  0.41 (0.29) 0.57 0.52 0.36 (0.06) 0.53 (0.11) 0.54 (0.11) } 0.27 (0.05) :
2007 0.72 1 0.33° 0.44 (0.10) 0.42 0.38 0.34 (0.05) 0.52 (0.13) 0.50 (0.11) : 0.24 (0.06):
2008 1.46 :0.46: 0.60 (0.13) 0.71 0.64 0.58 (0.11) 0.70 (0.31) 0.54 (0.26) } 0.52 (0.18) :
2009 0.81 i 0.41: 0.65 (0.08) 0.90 0.61 0.56 (0.08) 0.98 (0.10) 1.03 (0.09) : 0.41 (0.10) :
2010 0.62 : 0.48: 0.44 (0.12) 0.43 047 0.41 (0.06) 0.43 (0.11) 0.52 (0.11) } 0.32 (0.07):
2011 0.87 :0.48 0.61 (0.17) 0.77 0.60 0.53 (0.10) 0.82 (0.20) 0.93 (0.16) : 0.45 (0.12) :

Mean 0.82 §0.41§ 0.48 0.58 0.49 0.44 0.58 0.61 : 0.33

4 Discussion

Our results show that incorporating dynamic aggregations of higher resolution
variables into a regional model is beneficial in our particular problem setting, as
compared to both uniform up-sampling of variables and a state-of-the-art linear
regression technique (SL) that incorporates individual spatial units. SL achieves
competitive prediction performance through a sparse linear combination of the
individual spatial units, on par with SGP which is not linearly constrained.
Ultimately, GPESA performed significantly better (lower median test error) than
SL on a majority (5 of 9) of cross validation folds. Moreover, whenever GPESA
was not significantly better than SL it was not significantly worse.

A main reason why GPESA has an advantage in this application is the dif-
ficulty of knowing a priori what the most important spatial datapoints are, and
how to best aggregate them. Additionally, the structure of the model itself is
unknown and it depends on the resulting aggregations. Therefore this is not a
fixed length optimization problem, which makes it well-suited for GPESA, which
can search over different numbers and non-linear combinations of spatial aggre-
gations. While SL can theoretically perform the same aggregation as a GPESA
terminal (mean within a radius of a geographical point), SL is restricted to a
single linear solution while GPESA is not.

However, it’s important to emphasize that the computational cost of GPESA
is higher than that of traditional GP and much higher than that of linear regres-
sion. In particular, the most expensive operation is the “on the fly” aggregation
component of GPESA which makes the fitness evaluation require 500 % more time
than in SGP. Part of the incurred cost is due to inefficiencies of our implemen-
tation that necessitated a copy with all spatial aggregation operations. In future
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Fig. 1. Importance (defined in Sect.4) of spatial units. For filters (a.) FR, (c.) FL,
and (e.) FGP, importance is displayed at each resolution R € {1,2,...20} and each
individual filter subplot is annotated with the corresponding R. For wrappers (b.) WR
and (d.) WL, R € {1,2,3,4}. Finally, (f.) GPESA, which has no R parameter. White
areas indicate spatial units unused in feature construction across all three exploratory
variables.
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work we will look at reducing this overhead through more efficient data structures
(e.g. k-d trees).

Importance of Spatial Data. To better understand the relevance of particu-
lar spatial locations, we define the importance of a spatial unit for both linear
and symbolic methods, separately. For ridge regression and lasso, we can define
importance by exploiting the disposition of coefficients to be larger for variables
with a stronger correlation to the response, relative to a particular feature set.
We define linear regression importance of a particular spatial unit as the aver-
age absolute coefficient of features that incorporate the unit into a regression
model. While we cannot as easily determine relative importance within nonlin-
ear models, we can instead define importance by exploiting the multiple candi-
date solutions provided from stochastic multiobjective optimization. We define
GP importance of a particular spatial unit as the average absolute correlation
(1 = feor) of nondominated solutions that incorporate the unit.

To visualize the importance of spatial information, we generated a series of
heatmaps (Fig. 1). In Figs. 1a, ¢ and e we show regional importance values of filter
methods for each R € {1, ...,20}, with the relevant value of R annotated in the
upper left corner of each box. Note that in lasso- and GP-based approaches, some
variables are unused (white), while ridge cannot perform variable selection and
uses all. Figures 1b and d plot WR and WL for R € {1, 2, 3,4}. Finally, Figs. le
and f plot the importance of spatial information in the GP sense, for FGP and
GPESA, respectively. Overall, this visualization indicates an agreement among
all methods on the relatively higher importance of information in the lower
center /right region of the image.

5 Conclusion

In this work we developed a novel method to address the problem of modeling
a regional response with high resolution satellite imagery. We moved away from
uniform up-sampling aggregations towards more flexible and interesting aggre-
gation operations predicated on their subsequent use as features of a regional
model. Our proposed technique, GPESA, is general and intended to apply to a
variety of modeling problems on spatially organized data. But as an application
example, and as a setting in which to evaluate our techniques, we considered
the problem of estimating snow water equivalent in high mountain Asia using
satellite imagery. Our results showed that using GP to evolve spatial aggrega-
tions outperforms lasso, the state-of-the-art method for directly incorporating
individual spatial units into a sparse linear model.

In future work we plan to explore more flexible spatial and temporal aggre-
gations for more predictive modeling in real earth science applications.

Acknowledgements. Thanks to Dr. Jeff Dozier (UCSB) for posing the high-
mountain Asia SWE problem and providing associated datasets.
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