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Abstract. A novel one-class learning approach is proposed for network
anomaly detection based on combining autoencoders and density esti-
mation. An autoencoder attempts to reproduce the input data in the
output layer. The smaller hidden layer becomes a bottleneck, forming a
compressed representation of the data. It is now proposed to take low
density in the hidden layer as indicating an anomaly. We study two possi-
bilities for modelling density: a single Gaussian, and a full kernel density
estimation. The methods are tested on the NSL-KDD dataset, and exper-
iments show that the proposed methods out-perform best-known results
on three out of four sub-datasets.
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1 Introduction

Anomaly detection plays an important role in a variety of application domains
ranging from intrusion detection in network security, credit card fraud detec-
tion, health care and insurance to fault detection in safety critical systems [1,3].
This is due to the fact that anomalies often translate to critical, actionable
information or potentially dangerous situations and events. In network security,
anomaly detection is the task of distinguishing illegal, malicious activities from
normal traffic or behavior of systems [3,13]. This has become increasingly impor-
tant due to valuable resources and the widespread use of computer networks in
recent years.

Network anomaly detection models must be sufficiently flexible to keep up
with the continuous evolution of attacks or malicious activities over time, and
the occurrence of new, unknown anomalies [8]. Moreover, labeled anomaly data
may not be available, due to the rarity of intrusions, difficulty of labeling, and
the privacy and security concerns of computer networks [8,19]. For these rea-
sons, one-class learning or novelty detection is a common approach for network
anomaly detection. A one-class classifier constructed from only normal (target)
data is employed to classify whether an unseen instance belongs to the normal
class or anomaly (non-target) class [15].
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We are continuing previous research on one-class classification (OCC) with
Kernel Density Estimation (KDE) [2]. It works by defining a threshold on density
of the normal data: query points below the threshold are classed as anomalies.
Several approaches to modeling density are possible, e.g. a single Gaussian, mul-
tiple independent Gaussians, and negative mean distance [21], but KDE is the
most flexible of all. We found that KDE performed very well (better than One-
class SVM [18]), but was slow at query time, so we provided a method to speed
it up using Genetic Programming (GP).

Another method commonly used for anomaly detection is autoencoders
(AEs). This design was named an “autoencoder” by Japkowicz et al. [11], who
applied it for novelty detection in 1995. An autoencoder is a neural network
which learns to reconstruct its input at the output layer. A narrow middle layer
compresses redundancies in the input data while non-redundant information
remains [11]. The effect is rather like a non-linear PCA. AEs are commonly used
as building blocks in deep neural networks [10], and a key idea is that after train-
ing, the output layer is discarded, and the hidden layer is used as a new feature
representation. In the one-class learning context, the reconstruction error (RE)
of trained AEs is commonly used as a measure of “anomalyness”.

In this paper, we investigate the distribution of data in the AE hidden layer.
Based on this, we will propose a novel one-class learning method which models
density of the compressed data from hidden layer on a trained AE. Two well-
known density estimators are employed to model the density from hidden layer,
a single Gaussian and a full KDE. An autoencoder is first trained on the normal
class to minimize RE. The normal data is then passed through the trained AE
again, and its density in the hidden layer is estimated. At the testing stage, a
query point is first passed through the trained AE, and its value at the hidden
layer is classified into normal or anomaly class by the density models.

The rest of this paper is organized as follows. We briefly review some work
related to OCC based on AEs. In Sect. 3, we give a short introduction to AEs and
density estimation. This is followed by a section proposing OCC using AEs and
density estimation together. Experiments, Results and Discussion are presented
in Sects. 5 and 6 respectively. The paper concludes with highlights and future
directions.

2 Related Work

Recently, autoencoders or bottleneck neural networks became popular for anom-
aly detection as one-class learning techniques [17,22]. Hawkins et al. [9] trained a
replicator neural network with narrow middle layers on normal data to construct
a one-class classifier using reconstruction error as an indicator of anomalies. They
used a step-wise activation function for the hidden layer to divide the continu-
ously distributed data into clusters. Similarly, Sakurada and Yairi [17] compared
classifiers based on AE, denoising AE, linear PCA, and kernel PCA. The clas-
sifiers were evaluated on spacecraft telemetry data. The learned features in the
hidden layer were also examined.
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Veeramachaneni et al. [22] proposed an ensemble learner to combine three
single classifiers: AE, density-based, and matrix decomposition-based. They also
used a human expert to provide ongoing correct labels for the algorithms to
learn from. They tested their model on a large network log file dataset, with
good results.

Erfani et al. [7] proposed a hybrid of a Deep Belief Network (DBN) and a
linear one-class SVM for high-dimensional anomaly detection. A one-class SVM
was built on the top of the trained DBN. This structure takes advantage of
high decision classification accuracy from one-class SVMs and non-linear fea-
ture reduction from DBNs. The model was tested on eight UCI datasets, with
comparable results to AE, and a significant improvement at query time.

In our work, we present a new approach for anomaly detection. We apply
density estimation on the compressed data in the hidden layer. This method is
distinct from those discussed above.

3 Preliminaries

3.1 Autoencoder

An autoencoder is a neural network with a (typically) narrow middle layer (“bot-
tleneck”). It attempts to reproduce the input at the output, as illustrated in
Fig. 1(a). It is commonly used for novelty detection and deep learning [9,11].

Let x ∈ R
n be an input example. The hidden representation z(x) ∈ R

m is
represented in Eq. 1,

z (x) = f1 (W1x + b1) (1)

where f1 is a non-linear activation function, W1 ∈ R
n×m is a weight matrix,

b1 ∈ R
m is a bias vector. The latent representation z is then mapped back into

a reconstruction x̂ ∈ R
n in the output layer:

x̂ = f2 (W2z(x) + b2) (2)

where W2 ∈ m × n and b2 ∈ R
n are the weight matrix and bias vector of the

output layer. f2 is the output function. In this work, the logistic function (Eq. 3)
and the identity function are used for hidden and output layers respectively. In
Eq. 3, k is a steepness parameter.

f1 (z) =
1

1 + e(−kz)
(3)

The parameters of the network, θ = {W1,W2, b1, b2}, are optimized such
that the average reconstruction error (RE) is minimized. RE can be measured in
many ways, and mean square error (MSE) is commonly used in training neural
networks. In order to minimise the RE, stochastic gradient descent (SGD) is
commonly used to train the network.

For anomaly detection, a model trained on normal data tends to fail to
reproduce anomaly data, and produces high RE. Therefore, the reconstruction
error is used as anomaly score. A test instance will be regarded as an anomaly
if its RE is higher than a pre-determined error threshold.
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3.2 Density Estimation

In this section, we briefly describe two methods of estimating density, Centroid
and KDE. The Centroid method uses a single Gaussian, whose mean is placed
at the centroid of the training data. The standard deviation is chosen to equal
the standard deviation of the data, but in fact is unimportant: when we impose
a threshold on density, the method becomes equivalent to imposing a threshold
on distance (i.e. radius) from the centroid.

KDE is a non-parametric method of estimating probability density given a
sample. Let x1, x2, ...., xn be a set of d-dimensional samples in R

d drawn from
an unknown distribution with density function p(x). An estimate p̂(x) of the
density at x can be calculated using

p̂(x) =
1
n

n∑

i=1

Kh (x − xi) (4)

where Kh : Rd → R is a kernel function with a parameter h called the band-
width. The Gaussian kernel (Eq. 5) is common in applications and is the only
one used in this paper. As illustrated in Fig. 1(b) in KDE each point contributes
a small “bump” to the overall density, with its shape controlled by the kernel
and bandwidth. The bandwidth parameter h controls the trade-off between bias
of the estimator and its variance.

Kh (x) = exp (− x2

2h2
) (5)

4 Proposed Approach

Our proposed approach is to use density estimation on the hidden layer of an
autoencoder. Our motivation for this is the same as that for RE-based OCC:
anomaly data is poorly reconstructed by an AE trained on normal data, and
part of this must be due to anomaly data occupying an unusual position in the
hidden layer. We demonstrate this in Fig. 3. There are two phases in our method,
training and testing, as illustrated in Fig. 2. In the training phase, an AE is first
trained on a normal training set, and the training set is then passed through
the trained AE again. The training data, compressed in the hidden layer, is
used to build a density model. Based on the training stage, a density threshold
is set, for example keeping 95 % of the training set. The compressed data will
be classified as normal or anomaly by a threshold on the density model. Two
density estimation methods are employed: Centroid and KDE.

The combination of an AE and density estimation takes advantage of their
different strengths. AEs can compress input data to fewer dimensions while
retaining non-redundant information, while density estimation works best in
lower-dimensional spaces.
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(a) (b)

Fig. 1. (a) An autoencoder. (b) Density estimated by KDE (Figure from https://en.
wikipedia.org/w/index.php?title=Kernel density estimation)

Fig. 2. The proposed anomaly detection model

5 Experiments

5.1 Datasets

The approach of simulating a one-class dataset by throwing away data from a
binary dataset is a common approach in previous work [2,5,21]. In this work, we
choose datasets that have one class considered as normal class and other classes
treated as an anomaly class [4,21]. Four UCI datasets [14], namely Wisconsin
Breast Cancer Database (WBC), Wisconsin Diagnostic Breast Cancer (WDBC),
Cleveland heart disease (C-heart) and Australian Credit Approval (ACA), and
NS-KDD dataset [20] are employed for our experiments. For the UCI datasets,
we randomly sample 70 % for training and 30 % for testing. The normal training
set is formed by removing all anomaly examples.

NSL-KDD dataset is a filtered version of the KDD Cup 1999 dataset [12]
after removing all redundant instances and making the task more difficult. Each
record in the dataset is labeled as either normal or as a specific kind of attack
belonging to one of the four main categories: Denial of Service (DoS), Remote

https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation
https://en.wikipedia.org/w/index.php?title=Kernel_density_estimation
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to Local (R2L), User to Local (U2R) and Probe. NSL-KDD consists of two
datasets: KDDTrain+ and KDDTest+ which are drawn from different distrib-
utions. Several of the variables in the dataset are categorical or discrete. We
simply treat them as real-valued. As shown in Sect. 6 this gives good results, but
better encodings are possible.

In this work, we plan to conduct our experiments on four groups of attacks
separately. The aim is to see how efficiently our method performs on each group
of attacks. In order to transfer hyperparameter values from the UCI to the
NSL-KDD datasets, we wish to have a similar-sized dataset. We randomly sub-
sample 350 normal instances from KDDTrain+. We use all normal and anomaly
instances from KDDTest+ as our labelled test set. The details are shown in
Table 1.

Table 1. One-class classification datasets

Dataset Features Training set Testing set

Normal Normal Anomaly

C-heart 13 112 48 42

ACA 14 268 115 93

WBC 9 310 134 72

WDBC 30 249 108 64

DoS 41 350 9711 7458

R2L 41 350 9711 2887

U2R 41 350 9711 67

Probe 41 350 9711 2421

5.2 Experimental Settings

In this work, the classifiers will be constructed from the normal class only. There
is no validation set for doing cross-validation. Therefore, we plan to conduct
two experiments, one preliminary experiment for tuning the hyperparameters
of the proposed models and one main experiment for evaluating the models.
We use the terms OCCEN, OCKDE, and OCAE to refer to one-class classifiers
based on the hybrid of AE and Centroid, the hybrid of AE and KDE, and
AE itself respectively. The choice of a threshold for classifiers in practice varies
from domain to domain, but in this work we try many different thresholds, and
evaluate the area under the resulting ROC curve (AUC).

The parameters that will not be estimated from the preliminary experiment
are set to common values. The Adaptive Gradient Algorithm (Adagrad) [6] with
a common value for the learning rate, α = 0.01, and smoothing term ε = 10−8

will be used to train AEs. Hawkins et al. [9] chose different values for epochs (from
1000 to 40000), but in this work we choose a single value for epochs = 5000. The

Gaussian kernel is used for KDE and its bandwidth, h =
√

hidden size
2 as in [16].
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The preliminary experiment is done on the four UCI datasets to investigate
steepness, k, and estimate the size of hidden layer, m, of the models for later
testing on the NS-KDD dataset. Firstly, we visualise the data distribution in
the hidden layer. In Fig. 3, normal and anomaly data are plotted with different
values of k (0.1, 0.5, 1.0) and m = 2. We see normal data is approximately
Gaussian for k = 0.1 whereas for k = 1.0 it seems to be distributed along the
borders of a hyperbox. Even in this 2D example, for k = 1.0, the anomaly data
is strongly concentrated in a single area, allowing good separation. We choose a
common value k = 1.0 for our main experiment.

Fig. 3. Data on hidden layer with respect to hidden size, m = 2

Secondly, we run the models with different sizes of hidden layer on the four
UCI datasets. In Fig. 4, the AUC from OCCEN, OCKDE and OCAE are plotted
against hidden size. The figures illustrate that both the three classifiers produce
very high AUC values at hidden size, m = 4 and 8 on WBC, and m = 4 on
ACA. However, on C-heart, OCCEN and OCKDE perform very well at m = 3
and 6 whereas OCAE produces the highest AUC at m = 4. The highest and the
second highest AUC values from the three classifiers on WBCD are obtained at
m = 8 and 6 respectively. Overall, these classifiers produce good accuracy at
m = 3 or 4 on WBC, ACA and C-heart, and at m = 6 or 8 on WBCD.

Therefore, we propose a rule of thumb for choosing hidden size, m = [1 +
√

n],
where n is the number of features. Based on this rule, we calculate parameter
m for the models on these datasets, m = 4 for WBC, ACA and C-heart, and
m = 6 for WBCD. For the NSL-KDD dataset, m will be equal to 7.

The main experiment is to investigate the performance of the methods
OCAE, OCCEN, OCKDE on the four groups of attacks in NSL-KDD dataset.
The classifiers are set up with the set of parameters presented above, and the
results are shown in Table 2 and Fig. 5. The code of the experiments is available
on github1.

6 Results and Discussion

This section presents the experimental results of evaluating the proposed one-class
classifiers on the four groups of attacks in NSL-KDD dataset. The performance of
1 https://github.com/caovanloi/AEDensityEstimation.

https://github.com/caovanloi/AEDensityEstimation
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Fig. 4. Plotting AUC values against different hidden sizes on the UCI datasets

the three one-class classifiers, OCAE, OCCEN, OCKDE is evaluated using AUC.
The results are summarized in Table 2. The ROC curves of the density-based clas-
sifiers are shown against those of OCAE in Fig. 5.

Table 2 illustrates the AUC values from the three one-class classifiers. It can
be seen from the table that OCKDE performs very well in terms of accuracy,
and better than OCAE on DoS, U2R and Probe. The AUC values from OCCEN
are also higher than those from OCAE on Probe. However, the performance of
OCCEN is similar to or worse than that of OCAE on three other groups.

The ROC curves are displayed in Fig. 5. The ROC curves of OCCEN,
OCKDE are plotted against the ROC curve of OCAE. It can be seen that the
curves of OCKDE is usually higher than the curves of the two other classifiers
on the NSL-KDD dataset.

Table 2. The AUC results from the three classifiers on NSL-KDD dataset

Dataset RE AUC

OCAE OCCEN OCKDE

DoS 0.459 0.960 0.956 0.974

R2L 0.459 0.909 0.839 0.891

U2R 0.459 0.928 0.888 0.945

Probe 0.459 0.971 0.986 0.987

Overall, these results suggest that the proposed density-based classifiers,
OCCEN and OCKDE, tend to perform well in terms of accuracy on datasets
in which the normal and anomaly classes are highly separated (e.g. Probe, DoS
or U2R). The KDE-based one-class classifier, OCKDE, is more powerful than
OCCEN and OCAE in detecting anomalies from NSL-KDD dataset.
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Fig. 5. The ROC curves of the three classifiers on NSL-KDD dataset

7 Conclusion and Further Work

In this paper, we have proposed a novel method for anomaly detection based
on estimating density in the compressed hidden-layer representation of autoen-
coders. We have motivated this method through visualization of density in the
hidden layer. We investigated the hyperparameters of AE based on the UCI
datasets, and proposed an equation for estimating the size of hidden layer for
later evaluating the models on NSL-KDD dataset.

The experimental results suggest that our proposed model performs well, and
often out-performs a typical autoencoder approach based on reconstruction error
on the dataset from security domain. The model also tend to work efficiently on
the datasets in which the normal and anomaly classes are highly separated. This
will help our model become an universal method for anomaly detection. Further
work will focus on how to speed up the query stage of the models.
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