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Abstract. A rigorous runtime analysis of evolutionary multi-objective
optimization for the classical vertex cover problem in the context of
parameterized complexity analysis has been presented by Kratsch and
Neumann [1]. In this paper, we extend the analysis to the weighted ver-
tex cover problem and provide a fixed parameter evolutionary algorithm
with respect to OPT , the cost of the optimal solution for the problem.
Moreover, using a diversity mechanism, we present a multi-objective evo-
lutionary algorithm that finds a 2−approximation in expected polynomial
time.

1 Introduction

The area of runtime analysis has provided many rigorous new insights into the
working behaviour of bio-inspired computing methods such as evolutionary algo-
rithms and ant colony optimization [2–4]. In recent years, the parameterized
analysis of bio-inspired computing has gained additional interest [1,5,6]. Here
the runtime of bio-inspired computing is studied in dependence of the input
size and additional parameters such as the solution size and/or other structural
parameters of the given input.

One of the classical problems that has been studied extensively in the area
of runtime analysis is the classical NP-hard vertex cover problem. Here, an undi-
rected graph is given and the goal is to find a minimum set of nodes V ′ such that
each edge has at least one endpoint in V ′. Friedrich et al. [7] have shown that
the single-objective evolutionary algorithm (1+1) EA can not achieve a better
than trivial approximation ratio in expected polynomial time. Furthermore, they
have shown that a multi-objective approach using Global SEMO gives a factor
O(log n) approximation for the wider classes of set cover problems in expected
polynomial time. Further investigations regarding the approximation behaviour
of evolutionary algorithms for the vertex cover problem have been carried out
in [8,9]. Edge-based representations in connection with different fitness functions
have been investigated in [10,11] according to their approximation behaviour in
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the static and dynamic setting. Kratsch and Neumann [1] have studied evolution-
ary algorithms and the vertex cover problem in the context of parameterized com-
plexity. They have shown that Global SEMO, with a problem specific mutation
operator is a fixed parameter evolutionary algorithm for this problem and finds
2−approximations in expected polynomial time. Kratsch and Neumann [1] have
also introduced an alternative mutation operator and have proved that Global
SEMO using this mutation operator finds a (1 + ε)−approximation in expected
time O(n2 log n + OPT · n2 + n · 4(1−ε)OPT ). Jansen et al. [10] have shown that
a 2-approximation can also be obtained by using an edge-based representation in
the (1+1) EA combined with a fitness function formulation based on matchings.

To our knowledge all investigations so far in the area of runtime analysis
consider the (unweighted) vertex cover problem. In this paper, we consider the
weighted vertex cover problem where in addition weights on the nodes are given
and the goal is to find a vertex cover of minimum weight. We extend the investi-
gations carried out in [1] to the weighted minimum vertex cover problem. In [1],
multi-objective models in combination with a simple multi-objective evolution-
ary algorithm called Global SEMO are investigated. One key argument for the
results presented for the (unweighted) vertex cover problem is that the popu-
lation size is always upper bounded by n + 1. This argument does not hold in
the weighted case. Therefore, we study how a variant of Global SEMO using an
appropriate diversity mechanism is able to deal with the weighted case.

Our focus is on finding good approximations of an optimal solution. We
analyse the time complexity with respect to n, Wmax, and OPT , which denote
the number of vertices, the maximum weight in the input graph, and the cost of
the optimal solution respectively. We first study the expected time of finding a
solution with expected approximation ratio (1 + ε) for this problem by Global
SEMO with alternative mutation operator. Afterwards, we consider DEMO, a
variant of Global SEMO, which incorporates ε-dominance [12] as diversity mech-
anism. We show that DEMO using standard mutation finds a 2-approximation
in expected polynomial time.

The outline of the paper is as follows. In Sect. 2, the problem definition is
presented as well as the classical Global SEMO algorithm and DEMO algorithm.
Runtime analysis for finding a (1 + ε)−approximation by Global SEMO is pre-
sented in Sect. 3. Section 4 includes the analysis that shows DEMO can find
2−approximations of the optimum in expected polynomial time. At the end, in
Sect. 5 we summarize and conclude.

2 Preliminaries

We consider the weighted vertex cover problem defined as follows. Given a graph
G = (V,E) with vertex set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}, and
a positive weight function w : V → N+ on the vertices, the goal is to find a
subset of nodes, VC ⊆ V , that covers all edges and has minimum weight, i. e.
∀e ∈ E, e ∩ VC �= ∅ and

∑
v∈VC

w(v) is minimized. We consider the standard
node-based approach, i.e. the search space is {0, 1}n and for a solution x =
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1. Choose x ∈ {0, 1}n uniformly at random and set P = {x};
2. while (not termination condition)

– Choose x ∈ P uniformly at random and set x′ = x;

– Let E(x) ⊆ E denote the set of edges that are not covered by x and

S(x) ⊆ {1, . . . , n} the vertices being incident on the edges in E(x).

– Choose b ∈ {0, 1} uniform at random.

– If b = 0 flip each bit of x′ independently with probability 1/n.

– Otherwise flip each bit of S(x′) independently with probability 1/2 and each other bit

independently with probability 1/n.

– If there is no y ∈ P with f(y) ≤ f(x′) then delete all z ∈ P with f(x′) ≤ f(z) from

P and add x′ to P .

Algorithm 1. Global SEMO

(x1, . . . , xn) the node vi is chosen iff xi = 1. The Integer Linear Programming
(ILP) formulation of this problem is:

min
n∑

i=1

w(vi) · xi

s.t. xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1}
By relaxing the constraint xi ∈ {0, 1} to xi ∈ [0, 1], the linear program

formulation of Fractional Weighted Vertex Cover is obtained.
We consider primarily multi-objective approaches for the weighted vertex

cover problem. Given a multi-objective fitness function f = (f1, . . . , fd) : S → R

where all d objectives should be minimized, we have f(x) ≤ f(y) iff fi(x) ≤ fi(y),
1 ≤ i ≤ d. We say that x (weakly) dominates y iff f(x) ≤ f(y).

Let G(x) be the graph obtained from G by removing all nodes chosen by x and
the corresponding covered edges. Formally, we have G(x) = (V (x), E(x)) where
V (x) = V \ {vi | xi = 1} and E(x) = E \ {e | e ∩ (V \ V (x)) �= ∅}. Kratsch and
Neumann [1] investigated a multi-objective baseline algorithm called Global
SEMO using the LP-value for G(x) as one of the fitness values for the
(unweighted) minimum vertex cover problem. In order to expand the analysis
on behaviour of multi-objective evolutionary algorithms to the Weighted Vertex
Cover problem, we modify the fitness function that was used in Global SEMO
in [1], to match the weighted version of the problem. We investigate the multi-
objective fitness function f(x) = (Cost(x), LP (x)), where

– Cost(x) =
∑n

i=1 w(vi)xi is the sum of weights of selected vertices
– LP (x) is the value of an optimal solution of the LP for G(x).

We investigateGlobal SEMOwithalternativemutationoperator (Algorithm 1)
introduced in [1]. Here, the nodes that are adjacent to uncovered edges are mutated
with probability 1/2 in some steps. In the fitness function used in Global SEMO,
both Cost(x) and LP (x) can be exponential with respect to the input size; there-
fore, we need to deal with exponentially large number of solutions, even if we only
keep the Pareto front.
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1. Choose x ∈ {0, 1}n uniformly at random and set P = {x};
2. while (not termination condition)

– Choose x ∈ P uniformly at random and set x′ = x;

– Flip each bit of x′ independently with probability 1/n.

– If there is a y ∈ P where (f(y) ≤ f(x′) ∧ f(y) �= f(x′)) or

(b(y) = b(x′) ∧ Cost(y) + 2 · LP (y) ≤ Cost(x′) + 2 · LP (x′)) then keep P

unchanged and go to 4;

– Otherwise delete all z ∈ P with f(x′) ≤ f(z) ∨ b(z) = b(x′) from P and add x′ to P .

Algorithm 2. DEMO

One approach for dealing with this problem is using the concept of
ε−dominance [12]. The concept of ε−dominance has previously been proved to
be useful for coping with exponentially large Pareto fronts in some problems [13,
14]. Having two objective vectors u = (u1, · · · , um) and v = (v1, · · · , vm), u
ε−dominates v, denoted by u �ε v, if for all i ∈ {1, · · · ,m} we have (1+ε)ui ≤ vi.
In this approach, the objective space is partitioned into a polynomial number of
boxes in which all solutions ε−dominate each other, and at most one solution from
each box is kept in the population.

Motivated by this approach, DEMO (Diversity Evolutionary Multi-objective
Optimizer) has been investigated in [14,15]. In Sect. 4, we analyze DEMO
(see Algorithm 2) in which only one non-dominated solution can be kept in
the population for each box based on a predefined criteria. In our setting,
among two solutions x and y from one box, y is kept in P and x is dis-
carded if Cost(y) + 2 · LP (y) ≤ Cost(x) + 2 · LP (x). To implement the con-
cept of ε−dominance in DEMO, we use the parameter δ = 1

2n and define
the boxing function b : {0, 1}n → N

2 as b1(x) = �log1+δ(1 + Cost(x))
 and
b2(x) = �log1+δ(1 + LP (x))
.

Analysing the runtime of our evolutionary algorithms, we are interested in
the expected number of rounds of the while loop until a solution of desired
quality has been obtained. We call this the expected time until the considered
algorithm has achieved its desired goal.

3 Analysis of Global SEMO

In this section, we analyse the expected time of Global SEMO (Algorithm 1) to
find a (1+ε)-approximation. Before we present our analysis for Global SEMO,
we state some basic properties of the solutions in our multi-objective model. The
following theorem shown by Balinski [16] states that all basic feasible solutions of
the fractional vertex cover, which are the extremal points or the corner solutions
of the polyhedron that forms the feasible space, are half-integral.

Theorem 1. Each basic feasible solution x of the relaxed Vertex Cover ILP is
half-integral, i.e., x ∈ {0, 1/2, 1}n [16].
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As a result, there always exists a half integral optimal LP solution for a vertex
cover problem. This result and the following lemmata are used in the analysis
of Theorem 2 which presents the main approximation result for Global SEMO.
The proof of Lemma 3 can be found in [17].

Lemma 1. For any x ∈ {0, 1}n, LP (x) ≤ LP (0n) ≤ OPT .

Proof. Let y be the LP solution of LP (0n). Also, for any solution x, let G(x) be
the graph obtained from G by removing all vertices chosen by x and their edges.
The solution 0n contains no vertices; therefore, y is the optimal fractional vertex
cover for all edges of the input graph. Thus, for any solution x, y is a (possibly
non-optimal) fractional cover for G(x); therefore, LP (x) ≤ LP (0n). Moreover,
we have LP (0n) ≤ OPT as LP (0n) is the optimal value of the LP relaxation. ��
Lemma 2. Let x = {x1, · · · , xn}, xi ∈ {0, 1} be a solution and y =
{y1, · · · , yn}, yi ∈ [0, 1] be a fractional solution for G(x). If there is a vertex
vi where yi ≥ 1

2 , mutating xi from 0 to 1 results in a solution x′ for which
LP (x′) ≤ LP (x) − yi · w(vi) ≤ LP (x) − 1

2w(vi).

Proof. The graph G(x′) is the same as G(x) excluding the edges connected to
vi. Therefore, the solution y′ = {y1, · · · , yi−1, 0, yi+1, yn} is a fractional vertex
cover for G(x′) and has a cost of LP (x) − yiw(vi). The cost of the optimal
fractional vertex cover of G(x′) is at most as great as the cost of y′; thus LP (x′) ≤
LP (x) − yi · w(vi) ≤ LP (x) − 1

2w(vi). ��
Lemma 3. The population size of Global SEMO (Algorithm 1) is upper bounded
by 2 · OPT + 1 and the search point 0n is included in the population of Global
SEMO, in expected time O (OPT · n(log Wmax + log n)).

Lemma 4. A solution x fulfilling the two properties

1. LP (x) = LP (0n) − Cost(x) and
2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each
non-isolated vertex of G(x)

is included in the population of Global SEMO in expected time O(OPT ·
n(log Wmax + log n + OPT )).

Proof. The search point 0n which satisfies property 1 is included in the pop-
ulation in expected time of O(OPT · n(log Wmax + log n)), due to Lemma 3.
Let P ′ ⊆ P be a set of solutions such that for each solution x ∈ P ′,
LP (x) + Cost(x) = LP (0n). Let xmin ∈ P ′ be a solution such that LP (xmin) =
minx∈P ′LP (x).

If the optimal fractional vertex cover for G(xmin) assigns 1/2 to each non-
isolated vertex of G(xmin), then the conditions of the lemma hold. Otherwise, it
assigns 1 to some non-isolated vertex, say v. The probability that the algorithm
selects xmin and flips the bit corresponding to v, is Ω( 1

OPT ·n ), because the
population size is O(OPT ) (Lemma 3). Let xnew be the new solution. We have
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Cost(xnew) = Cost(xmin)+w(v), and by Lemma 2, LPw(xnew) ≤ LPw(xmin)−
w(v). This implies that LP (xnew) + Cost(xnew) = LP (0n); hence, xnew is a
Pareto Optimal solution and is added to the population P .

Since LPw(xmin) ≤ OPT (Lemma 1) and the weights are at least 1, assuming
that we already have the solution 0n in the population, by means of the method
of fitness based partitions, we find the expected time of finding a solution that
fulfils the properties given above as O(OPT 2 · n). Since the search point 0n is
included in expected time O(OPT · n(log Wmax + log n)), the expected time
that a solution fulfilling the properties given above is included in P is O(OPT ·
n(log Wmax + log n + OPT )). ��
Theorem 2. The expected time until Global SEMO has obtained a solution that
has expected approximation ratio (1 + ε) is O(OPT · 2min{n,2(1−ε)OPT} + OPT ·
n(log Wmax + log n + OPT )).

Proof. By Lemma 4, a solution x that satisfies the two properties given in
Lemma 4 is included in the population in expected time of O(OPT ·n(log Wmax+
log n + OPT )). For a set of nodes, X ′, we define Cost(X ′) =

∑
v∈X′ w(v).

Let X be the vertex set of graph G(x). Also, let S ⊆ X be a vertex cover
of G(x) with the minimum weight over all vertex covers of G(x), and T be
the set containing all non-isolated vertices in X \ S. Note that all vertices
in X \ (S ∪ T ) are isolated vertices in G(x). Due to property 2 of Lemma 4,
1
2Cost(S) + 1

2Cost(T ) = LP (x) ≤ Cost(S); therefore, Cost(T ) ≤ Cost(S). Let
OPT ′ = OPT − Cost(x). Observe that OPT ′ = Cost(S).

Let s1, . . . , s|S| be a numbering of the vertices in S such that w(si) ≤ w(si+1),
for all 1 ≤ i ≤ |S| − 1. And let t1, . . . , t|T | be a numbering of the vertices in T such
that w(ti) ≥ w(ti+1), for all 1 ≤ i ≤ |T | − 1. Let S1 = {s1, s2, . . . , sρ}, where
ρ = min{|S|, (1 − ε) · OPT ′}, and T1 = {t1, t2, . . . , tη}, where η = min{|T |, (1 −
ε) · OPT ′}.

With probability Ω( 1
OPT ), the algorithm Global SEMO selects the solution

x, and sets b = 1. With b = 1, the probability that the bits corresponding
to all vertices of S1 are flipped, is Ω((12 )ρ), and the probability that none of
the bits corresponding to the vertices of T1 are flipped is Ω((12 )η). Also, the
bits corresponding to the isolated vertices of G(x) are flipped with probability
1
n ; hence, the probability that none of them flips is Ω(1). As a result, with
probability Ω( 1

OPT ·( 12 )ρ+η), solution x is selected, the vertices of S1 are included,
and the vertices of T1 and isolated vertices are not included in the new solution x′.
Since ρ+η ≤ 2(1−ε)·OPT ′ ≤ 2(1−ε)·OPT , and also ρ+η ≤ n; the expected time
until solution x′ is found after reaching solution x, is O(OPT ·2min{n,2(1−ε)OPT}).

Note that the bits corresponding to vertices of S2 = S \ S1 and T2 = T \ T1,
are arbitrarily flipped in solution x′ with probability 1/2 by the Alternative
Mutation Operator. Here we show that for the expected cost and the LP value
of x′, the following constraint holds: E[Cost(x′)] + 2 · LP (x′) ≤ (1 + ε) · OPT .
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Let S′ ⊆ S and T ′ ⊆ T denote the subset of vertices of S and T that are
actually included in the new solution x′ respectively. In the following, we show
that for the expected values of Cost(S′) and Cost(T ′), we have:

E [Cost(S′)] ≥ (1 − ε) · OPT ′ + E [Cost(T ′)] (1)

Since the bits corresponding to the vertices of S2 and T2 are flipped with
probability 1/2, for the expected values of Cost(S′) and Cost(T ′) we have:

E [Cost(S′)] = Cost(S1) +
Cost(S2)

2
= Cost(S1) +

Cost(S) − Cost(S1)
2

= 1/2Cost(S) + 1/2Cost(S1)

and E [Cost(T ′)] = 1/2Cost(T2).
If ρ = |S|, then S1 = S and Cost(S1) = Cost(S) = OPT ′. If ρ = (1 − ε) ·

OPT ′, we have Cost(S1) ≥ (1 − ε) · OPT ′, since each vertex has a weight of
at least 1. Using Cost(S) = OPT ′ and the inequality above, we have

E [Cost(S′)] ≥ (1 − ε) · OPT ′ +
ε · OPT ′

2

We divide the analysis into two cases based on the relation between η and |T |.
Case (I). η = |T |. Then T2 = T ′ = ∅. Thus, E [Cost(T ′)] = 0 and Inequality

(1) holds true.
Case (II). η = (1 − ε) · OPT ′ < |T |. Since w(ti) ≥ w(ti+1) for 1 ≤ i ≤ |T | − 1

and Cost(T ) ≤ Cost(S) = OPT ′, we have

Cost(T2) ≤ |T | − η

|T | Cost(T ) ≤ OPT ′ − (1 − ε) · OPT ′

OPT ′ Cost(T )

≤ εCost(S) = ε · OPT ′

Thus for the expected value of Cost(T ′), we have E [Cost(T ′)] = 1
2Cost(T2) ≤

ε·OPT ′
2 .
Summarizing above analysis, we can get that the Inequality (1) holds. Using

this inequality, we prove that in expectation, the new solution x′ satisfies the
inequality Cost(x′) + 2 · LP (x′) ≤ (1 + ε) · OPT :

E
[
Cost(x′)

]
+ 2 · LP (x′) = Cost(x) + E

[
Cost(S′)

]
+ E

[
Cost(T ′)

]
+ 2 · LP (x′)

≤ Cost(x) + E
[
Cost(S′)

]
+ E

[
Cost(S′)

]− (1 − ε) · OPT ′ + 2 · LP (x′)

≤ Cost(x) + 2E
[
Cost(S′)

]− (1 − ε) · OPT ′ + 2 · (OPT ′ − E
[
Cost(S′)

]
)

= Cost(x) + (1 + ε) · OPT ′ = Cost(x) + (1 + ε) · (OPT − Cost(x))

≤ (1 + ε) · OPT.

Now we analyze whether the new solution x′ could be included in the
population P . If x′ could not be included in P , then there is a solution x′′
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dominating x, i.e., LP (x′′) ≤ LP (x′) and Cost(x′′) ≤ Cost(x′). This implies
Cost(x′′) + 2 · LP (x′′) < Cost(x′) + 2 · LP (x′) ≤ (1 + ε) · OPT . Therefore, after
having a solution that fulfils the properties of Lemma4 in P , in expected time
O(OPT ·2min{n,2(1−ε)OPT}), the population would contain a solution y such that
Cost(y) + 2 · LP (y) ≤ (1 + ε) · OPT .

LetP ′ contain all solutionsx ∈ P such thatCost(x)+2·LP (x) ≤ (1+ε)·OPT ,
and let xmin be the one that minimizes LP . Let y = {y1, · · · , yn} be a basic LP
solution for G(xmin). According to Theorem 1, y is a half-integral solution.

Let Δt be the improvement that happens on the minimum LP value in p′ at
time step t. Also let k be the number of nodes that are assigned at least 1

2 by
y. Flipping only one of these nodes by the algorithm happens with probability
at least k

e·n . According to Lemma 2, flipping one of these nodes, vi, results in
a solution x′ with LP (x′) ≤ LP (xmin) − yi · w(vi) ≤ LP (xmin) − 1

2 · w(vi).
Observe that the constraint of Cost(x′)+2 ·LP (x′) ≤ 2 ·OPT holds for solution
x′. Therefore, Δt ≥ yi · w(vi), which is in expectation at least LP (xmin)

k due to
definition of LP (xmin).

Moreover, at each step, the probability that xmin is selected and only one of
the k bits defined above flips is k

(2·OPT+1)·e·n , As a result we have:

E[Δt | xmin] ≥ k

(2 · OPT + 1) · e · n
· LP (xmin)

k
=

LP (xmin)
e · n · (2 · OPT + 1)

According to Lemma 1 for any solution x, we have LP (x) ≤ OPT . We
also know that for any solution x which is not a complete cover, LP (x) ≥ 1,
because the weights are positive integers. Using the method of Multiplica-
tive Drift Analysis [18] with s0 ≤ OPT and smin ≥ 1, we get the expected
time O(OPT · n log OPT ) to find a solution z for which LP (z) = 0 and
Cost(z) + 2 · LP (z) ≤ (1 + ε) · OPT .

Overall, the expected number of iterations of Global SEMO, for find-
ing a (1 + ε)-approximate weighted vertex cover, is bounded by O(OPT ·
2min{n,2(1−ε)OPT} + OPT · n(log Wmax + log n + OPT )). ��

4 Analysis of DEMO

In this section,we analyse the other evolutionary algorithm,DEMO(Algorithm 2),
that uses some diversity handling mechanisms for dealing with exponentially large
population sizes. We are making use of the following lemma whose proof can be
found in [17].

Lemma 5. The population size of DEMO is upper bounded by O (n · (log n+
log Wmax)) and the search point 0n is included in the population in expected time of
O(n3(log n + log Wmax)2).

Lemma 6. Let x ∈ P be a search point such that Cost(x) + 2 · LP (x) ≤ 2 ·
OPT and b2(x) > 0. There exists a 1-bit flip leading to a search point x′ with
Cost(x′) + 2 · LP (x′) ≤ 2 · OPT and b2(x′) < b2(x).
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Proof. Let y = {y1 · · · yn} be a basic half integral LP solution for G(x). Since
b2(x) = LP (x) �= 0, there must be at least one uncovered edge; hence, at least one
vertex vi has a yi ≥ 1

2 in LP solution y. Consider vj the vertex that maximizes
yiw(vi) among vertices vi, 1 ≤ i ≤ n. Also, let x′ be a solution obtained by
adding vj to x. Since solutions x and x′ are only different in one vertex, vj , we
have Cost(x′) = Cost(x) + w(vj). Moreover, according to Lemma 2, LP (x′) ≤
LP (x) − 1

2 · w(vj). Therefore,

Cost(x′) + 2 · LP (x′) ≤ Cost(x) + w(vj) + 2
(

LP (x) − w(vj)
2

)

≤ Cost(x) + 2 · LP (x) ≤ 2 · OPT

which means solution x′ fulfils the mentioned constraint. If LP (x) = W , then
yjw(vj) ≥ W

n , because n is an upper bound on the number of vertices selected
by the LP solution. As a result, using Lemma 2, we get LP (x′) ≤ W · (1 − 1

n ).
Therefore, we have:

(1 + δ) (1 + LP (x′)) ≤ 1 + δ + W

(

1 − 1
n

)

(1 + δ)

≤ 1 + δ + W + W (δ − 1
n

− δ

n
)

≤ 1 + W + W (2δ − 1
n

− δ

n
) ≤ 1 + W

which implies 1+log1+δ(1+LP (x′)) ≤ log1+δ(1+W ). As a result, b2(x′) < b2(x)
holds for x′, which is obtained by performing a 1-bit flip on x, and the lemma
is proved. ��
Theorem 3. The expected time until DEMO constructs a 2-approximate vertex
cover is O

(
n3 · (log n + log Wmax)2

)
.

Proof. Consider solution x ∈ P that minimizes b2(x) under the constraint
that Cost(x) + 2 · LP (x) ≤ 2 · OPT . Note that 0n fulfils this constraint
and according to Lemma 5, the solution 0n will be included in P in time
O

(
n3(log n + log Wmax)2

)
.

If b2(x) = 0 then x covers all edges and by selection of x we have Cost(x) ≤
2 · OPT , which means that x is a 2−approximation.

In case b2(x) �= 0, according to Lemma 6 there is a one-bit flip on
x that results in a new solution x′ for which b2(x′) < b2(x), while
the mentioned constraint also holds for it. Since the population size is
O (n · (log n + log Wmax)) (Lemma 5), this 1-bit flip happens with a probabil-
ity of Ω

(
n−2 · (log n + log Wmax)−1

)
and x′ is obtained in expected time of

O(n3 · (log n + log Wmax)2). This new solution will be added to P because
a solution y with Cost(y) + 2 · LP (y) > 2 · OPT can not dominate x′ with
Cost(x′)+2 ·LP (x′) ≤ 2 ·OPT , and x′ has the minimum value of b2 among solu-
tion that fulfil the constraint. Moreover, if there already is a solution, xprev, in
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the same box as x′, it will be replaced by x′ because Cost(xprev)+2·LP (xprev) >
2 · OPT ; otherwise, it would have been selected as x.

There are at most A = 1 + � log n+log Wmax

log(1+δ) 
 different values for b2 in the
objective space, and since δ = 1

2n , A = O(n · (log n+log Wmax)). Therefore, the
expected time until a solution x′′ is found so that b2(x′′) = 0 and Cost(x′′) + 2 ·
LP (x′′) ≤ 2 · OPT , is at most O(n3 · (log n + log Wmax)2). ��

5 Conclusion

The minimum vertex cover problem is one of the classical NP-hard combinato-
rial optimization problems. In this paper, we have generalized previous results
of Kratsch and Neumann [1] for the unweighted minimum vertex cover prob-
lem to the weighted case where in addition weights on the nodes are given. We
have studied the expected time required by Global SEMO to find a (1 + ε)-
approximation. Furthermore, our investigations show that the algorithm DEMO
using the ε-dominance approach reaches a 2-approximation in expected polyno-
mial time.
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