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Abstract. Set-quality indicators have been used in Evolutionary Multi-
objective Optimization Algorithms (EMOAs) to guide the search process.
A new class of set-quality indicators, the Sharpe-Ratio Indicator, com-
bining the selection of solutions with fitness assignment has been recently
proposed. This class is based on a formulation of fitness assignment
as a Portfolio Selection Problem which sees solutions as assets whose
returns are random variables, and fitness as the investment in such
assets/solutions. An instance of this class based on the Hypervolume
Indicator has shown promising results when integrated in an EMOA
called POSEA. The aim of this paper is to formalize the class of
Sharpe-Ratio Indicators and to demonstrate some of the properties of
that particular Sharpe-Ratio Indicator instance concerning monotonicity,
sensitivity to scaling and parameter independence.

Keywords: Sharpe Ratio · Portfolio selection · Evolutionary
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1 Introduction

Indicator-based Evolutionary Multiobjective Optimization Algorithms
(EMOAs) are currently among the state-of-the-art in Evolutionary Multiobjec-
tive Optimization. These EMOAs rely on quality indicators to guide the search,
which map a point set into a scalar value, such as the Hypervolume Indica-
tor [5,9]. Good quality indicators capture in a single value the proximity to the
Pareto front and the sparsity/diversity of the set, which tends to enhance the
capability of indicator-based EMOAs to find well-spread sets of good solutions.

Studies of quality-indicator properties have shown the abilities and limita-
tions of indicator-based EMOAs. Such properties allow one to better understand,
for example, whether an indicator-based EMOA aiming at the maximization of
the indicator, is able to converge to the Pareto Front (monotonicity [10]) or
understand which distribution each indicator favors (optimal μ-distributions [1]).

Yevseyeva et al. [8] established a link between the theory of Portfolio Selection
and selection in Evolutionary Algorithms (EAs) by making an analogy between
assets and individuals, expected return and individual quality, and return covari-
ance and lack of diversity. They proposed that individuals be assessed through
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the optimization of a Portfolio Selection Problem (PSP), formalized as the bi-
objective problem of assigning investment to a set of assets so as to maximize
expected return while minimizing return variance (associated to risk). This trans-
lates into the problem of assigning fitness to an EA population so as to max-
imize overall population quality while minimizing lack of diversity. Due to the
bi-objective nature of the PSP, different optimal investment strategies balancing
risk and expected return may be defined, such as the Sharpe Ratio, a risk-
adjusted performance index well known in Finance [3]. A new indicator related
to the Hypervolume Indicator, but based on the maximization of the Sharpe
Ratio, was proposed and integrated in an EMOA with promising results. How-
ever, its theoretical properties have not been considered so far.

The goal of this paper is to formalize the class of Sharpe-Ratio Indicators
and to study some of the properties of the indicator proposed by Yevseyeva
et al. [8]. Section 2 provides the background. Section 3 details and formalizes the
class of indicators based on the Sharpe Ratio and reintroduces the indicator
proposed by Yevseyeva et al., which will be called Hypervolume Sharpe Ratio
(HSR) Indicator, as an instance of this class. Then, some properties of the HSR
Indicator regarding monotonicity, reference points, and scaling independence,
will be demonstrated in Sect. 4. Some conclusions are drawn in Sect. 5.

2 Background

2.1 Definitions

In multiobjective optimization, each solution is mapped according to d objective
functions onto a point in the objective space, R

d. For simplicity, only those points
in objective space will be considered throughout this paper. Note that a number
in parentheses in superscript is used for enumeration (e.g. a(1), a(2), a(3) ∈ R

d)
while a number in subscript is used to refer to a coordinate of a point/vector
(e.g. vi is the ith coordinate of v ∈ R

d). As the objective space is a partially
ordered set, the Pareto dominance relation is introduced [4,11]:

Definition 1 (Dominance). A point u ∈ R
d is said to weakly dominate a point

v ∈ R
d, iff ui ≤ vi for all 1 ≤ i ≤ d, and this is represented as u ≤ v. If, in

addition u �= v, then u is said to dominate v and is represented as u < v. If
ui < vi for all 1 ≤ i ≤ d, then u is said to strongly dominate v, and this is
represented as u � v.

Definition 2 (Set dominance). A set A ⊂ R
d is said to weakly dominate a

set B ⊂ R
d iff ∀b∈B, ∃a∈A : a ≤ b. This is represented as A 	 B. A is said to

dominate a set B iff A 	 B and B � A, and this is represented as A ≺ B.

2.2 Properties

A set-indicator is a function I that assigns a real value to a non-empty set of
points in R

d [10]. Among the properties a set-indicator may possess [10], this
paper will cover parameter independence, sensitivity to scaling and monotonicity.
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Typically, an indicator is easier to use the lower is the number of parameters
that must be set. A scaling invariant indicator (e.g. the cardinality indicator [10])
guarantees that the indicator value for any subset of the objective space remains
unchanged when the objective space is scaled. A weaker form of invariance, called
scaling independence, ensures that the order defined by an indicator among all
subsets of the objective space is kept when the objective space is scaled.

Monotonicity is an important property as it formalizes the empirical notion
of agreement between indicator values and set dominance. A monotonic indicator
guarantees that a set of nondominated solutions is never considered to be worse
than another set which it dominates. A definition of (weak) monotonicity of a
set-quality indicator with respect to set dominance is given in [10]:

Definition 3 (Monotonicity). A set-indicator I is weakly monotonic w.r.t set
dominance iff, given two point sets A,B ⊂ R

d, A ≺ B implies I(A) ≥ I(B).

The above properties have been studied for indicators such as the hyper-
volume indicator (strictly monotonic [10] for sets of points that strongly dom-
inate the reference point, parameter-dependent [1], scaling independent [5,9])
and the additive ε-indicator (weakly monotonic [10], dependent on multiple
parameters [10]), thereby motivating their use in EMOAs as well as in per-
formance assessment. Not holding such properties may discourage the use of an
indicator in EMOAs. For example, a non-monotonic indicator may prefer non-
Pareto Front solutions over Pareto front solutions dominating them, as is the
case with the Average Hausdorff distance [7] and cardinality [10].

2.3 Sharpe Ratio

A portfolio balancing return and risk, is obtained by optimizing Problem 1:

Problem 1 (Sharpe-Ratio Maximization). Let A = {a(1), . . . , a(n)} be a non-
empty set of assets, let vector r ∈ R

n denote the expected return of these assets
and matrix Q ∈ R

n×n denote the return covariance between pairs of assets. Let
x ∈ [0, 1]n be the investment vector where xi denotes the investment in asset
a(i). The Sharpe-Ratio maximization problem is defined as:

max
x∈[0,1]n

h(x) =
rT x − rf√

xT Qx
s. t.

n∑

i=1

xi = 1 (1)

where rf represents the return of a riskless asset and h(x) is the Sharpe Ratio [3].

Although Problem 1 is non-linear, h(x) may be homogenized and thus, it may
be restated as an equivalent convex quadratic programming (QP) problem [3]:

Problem 2 (Sharpe-Ratio Maximization - QP Formulation).

min
y∈Rn

g(y) = yT Qy (2a)

s. t.
n∑

i=1

(ri − rf )yi = 1 (2b)

yi ≥ 0, i = 1, . . . , n (2c)
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The optimal investment x∗ for Problem 1, i.e., the optimal risky portfolio,
is given by x∗ = y∗/k, where y∗ is the optimal solution of Problem 2 and
k =

∑n
i=1 y∗

i .
So far, the set of assets A has been considered to be fixed and so have r and

Q. However, in this paper, r and Q are computed as function of a set of assets A
that is not fixed and thus, hA(x) and gA(y) will be used instead of h(x) and g(y),
respectively, to highlight this dependence where needed. Moreover, with a slight
abuse of language, a solution y to Problem 2 will also be called an investment
vector, as for a solution x for Problem 1.

3 Sharpe-Ratio Indicator

In this section, the class of Sharpe-Ratio Indicators is formalized, and the Hyper-
volume Sharpe-Ratio Indicator proposed by Yevseyeva et al. [8] is instantiated.

The return of each individual is related to the preferences of a Decision Maker
(DM) and different methods can be used to model the uncertainty surrounding
DM preferences. Yevseyeva et al.’s [8] interpretation of selection in EAs as a
portfolio selection problem sees the return of each individual asset as a random
variable whose expected values can be computed.

Problem 1 does not state what the expected return and covariance of
assets/individuals are. Different preferences lead to different ways of modeling
return (and vice-versa) which may lead to different investment strategies in EAs.
Therefore, a broad class of indicators based on the Sharpe Ratio can be defined:

Definition 4 (Sharpe-Ratio Indicator). Given a non-empty set of assets
A = {a(1), . . . , a(n)}, the corresponding expected return, r, and covariance
matrix, Q, the Sharpe-Ratio Indicator, ISR(A), is defined as follows:

ISR(A) = max
x∈Ω

hA(x) (3)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

Note that the Sharpe-Ratio Indicator simultaneously evaluates the quality of the
set A through a scalar, ISR(·), and also the importance of each solution in that
set through the optimal investment vector x∗.

The Hypervolume Sharpe-Ratio Indicator (HSR Indicator) is an instance of
the Sharpe-Ratio Indicator where the expected return vector and the return
covariance matrix are computed based on the Hypervolume Indicator as pro-
posed by Yevseyeva et al. [8]. The expected return of a solution is the probability
of that solution being satisfactory to the DM, assuming a uniform distribution
of the DM’s goal vector in an orthogonal range [l, u], l, u ∈ R

d. For the ith

individual in the population, this is represented by component pi of a vector p,
whereas the return covariance between the ith and jth individuals is represented
by element qij of a matrix Q (i, j = 1, . . . , n). Let:

pij(l, u) =
Λ([l, u] ∩ [a(i),∞[∩[a(j),∞[)

Λ([l, u])
=

∏d
k=1(uk − max(a(i)

k , a
(j)
k ))

∏d
k=1(uk − lk)

(4)
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Fig. 1. An example of the region measured to compute pij , given a point set A =
{a(1), a(2)} ⊂ R

2. The region measured to compute p1 and p2 and p12 is depicted in
darker gray in Figures (a), (b) and (c), respectively.

where l, u ∈ R
d are two reference points and Λ(·) denotes the Lebesgue

measure [2]. Note that pij is, therefore, the normalized hypervolume indica-
tor of the region jointly dominated by a(i) and a(j) inside the region of inter-
est, [l, u]. Moreover, from the formulation [8], ri(l, u) = pi(l, u) = pii(l, u) and
qij(l, u) = pij(l, u)−pi(l, u)pj(l, u). For the sake of readability, P = [pij ]n×n and
Q = [qij ]n×n will be assumed to have been previously calculated and, therefore,
parameters l and u from expression (4) will be omitted as long as no ambiguity
arises. Note that, from the definition of qij , Q = P − ppT .

In Fig. 1, assuming w.l.o.g. that l = (0, 0) and u = (1, 1), and thus,
Λ([l, u]) = 1, the area of the darker regions in Figs. 1(a) to (c) are, exactly, p1,
p2 and p12, respectively. Note that pii is related to the area dominated by a(i)

inside the region [l, u], while pij is related to the area simultaneously dominated
by a(i) and a(j) inside the region [l, u].

The Sharpe Ratio hA(x) for the set of solutions A where r and Q are defined
as in (4) will be represented by hA

HSR(x, l, u). Analogously to the Sharpe-Ratio
Indicator, the HSR Indicator is formally defined as follows:

Definition 5 (Hypervolume Sharpe-Ratio Indicator). Given a non-empty
point set A = {a(1), . . . , a(n)} ⊂ R

d, the points l, u ∈ R
d, the expected return p

and the covariance Q computed as expressed in (4), the Hypervolume Sharpe-
Ratio Indicator IHSR(A, l, u) is given by:

IHSR(A, l, u) = max
x∈Ω

hA
HSR(x, l, u) (5)

where Ω ⊂ [0, 1]n is the set of solutions that satisfy the constraints of Problem 1.

As Yevseyeva et al. [8] pointed out, it follows from the definition of qij that the
riskless asset is such that rf = 0. Consequently, Problem 2 may be simplified by
noting that the constraint (2b) must always be satisfied. Therefore, the following
is true for any solution y in the feasible space Ω:

yT Qy =
n∑

i=1

n∑

j=1

pijyiyj −
n∑

i=1

piyi

n∑

j=1

pjyj =
n∑

i=1

n∑

j=1

pijyiyj − 1 = yT Py − 1 (6)
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Note that this simplification of Problem 2 is applicable to any DM preference
model where rf is zero.

4 Properties of the HSR Indicator

In the following, the optimal investment is shown to be invariant to the setting
of l under certain conditions. Varying l can also be interpreted as applying
linear transformations to the objective space, under which the indicator is scaling
independent. Finally, the HSR Indicator is shown to be weakly monotonic.

4.1 Reference Points and Linear Scaling

Given a non-empty point set A ⊂ R
d and the reference points l, u ∈ R

d, such that
for all a ∈ A, l ≤ a � u holds, the location of l can be shown to have no effect
on the optimal investment in A as long as {l} ≤ A and u remains fixed. This is
equivalent to applying a linear transformation to the objective space, with u as
the center of the transformation. Thus, in practice, only one parameter of the
HSR Indicator needs to be set (the upper reference point, u). Formally:

Theorem 1. Let A ⊂ R
d be a non-empty point set, let l, u ∈ R

d be two
reference points such that ∀a∈A, l ≤ a � u, and let x∗ ∈ [0, 1]n be such that
IHSR(A, l, u) = hA

HSR(x∗, l, u). If l′ ∈ R
d is such that {l′} ≤ A, then x∗ also

satisfies IHSR(A, l′, u) = hA
HSR(x∗, l′, u).

Proof. Recall expression (4), of pij , for a given point set A = {a(1), . . . , a(n)} ⊂ R
d,

where p = [pii]n×1 and P = [pij ]n×n (i, j = 1, ..., n). P (l′, u) and p(l′, u) may be
defined as functions of P (l, u) and p(l, u), respectively, in the following way:

P (l′, u) =
v

v′ P (l, u) (7a)

p(l′, u) =
v

v′ p(l, u) (7b)

where v = Λ([l, u]) and v′ = Λ([l′, u]).
Assume that y ∈ R

n is the vector of variables of Problem 2 (minimizing
gAHSR(y, l, u) = yT Py − 1), when l is set as the lower reference point and that,
analogously, y′ ∈ R

n is the corresponding vector of variables when l′ is used
instead. Taking into account expressions (7b) and the equality constraint of
Problem 2, the following is derived:

p(l, u)T y = p(l′, u)T y′ ⇔ p(l, u)T y =
v

v′ p(l, u)T y′ ⇔ y =
v

v′ y
′ (8)

which implies that when y is such that y = v
v′ y

′, if y′ > 0 then y > 0 and
therefore, if y′ is feasible so is y and vice-versa. Hence, the following holds:

gAHSR(y′, l′, u) = y′T P (l′, u)y′ − 1 =
v′

v
yT P (l, u)y − 1 =

v′

v
gAHSR(y, l, u) − 1 +

v′

v
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Therefore, the optimal solution y′∗ for Problem 2, given l′, can be obtained
from the optimal solution y∗, given l, i.e., y′∗ = v′

v y∗. Consequently, the optimal
solution x∗ for Problem 1:

x∗ =
y∗

∑n
i=1 y∗

i

=
v
v′ y

′∗
v
v′

∑n
i=1 y′∗

i

=
y′∗

∑n
i=1 y′∗

i

. (9)

Hence, IHSR(A, l, u) = hHSR(x∗, l, u) implies that IHSR(A, l′, u) = hHSR(x∗, l′, u)
thus, Theorem 1 is proved.

Note that moving the lower reference point, l, for example, to a lower value of
one of the objectives while the others are kept the same, is equivalent to scaling
down that objective with respect to the other objectives. Thus, the placement of
l can also be seen as a way of linearly scaling the objective functions (as long as
this reference point continues to dominate A). Therefore, by Theorem 1, scaling
the objective space under such conditions does not affect the optimal investment.

Scaling through l comes down to multiplying pi and pij by a positive con-
stant as in the proof of Theorem 1. Observing the Sharpe Ratio expression h(x)
in Problem 1, the HSR-indicator is not scaling invariant, i.e., scaling the objec-
tive space will affect the indicator value. However, the HSR-indicator is scaling
independent under these linear transformations, as shown next.

Theorem 2 (Linear-Scaling Independence of IHSR). Consider two point
sets A,B ⊂ R

d and two reference points l, u ∈ R
d such that ∀a∈A,b∈B, l ≤ a, b � u.

Assume w.l.o.g. that A and B are such that IHSR(A, l, u) ≤ IHSR(B, l, u). Then,
IHSR(A, l′, u) ≤ IHSR(B, l′, u) holds for any l′ ∈ R

d such that {l′} ≤ A,B.

Proof. Let pA, PA and QA denote, respectively, the expected return vector, the
matrix of expected return and the return covariance matrix with respect to
point set A. Scaling is applied to A and B in expression h(x) in Problem 1 by
multiplying a constant t > 0 by each pi and pij and, therefore, p′

A = tpA and
P ′
A = tPA, where t = Λ([l,u])

Λ([l′,u]) . Consequently,

IHSR(A, l′, u) ≤ IHSR(B, l′, u) ⇔
tpT

AxA√
txT

APAxA − t2xT
ApApT

AxA

≤ tpT
BxB√

txT
BPBxB − t2xT

BpBpT
BxB

⇔

1
t
(xT

ApApT
AxA)(xT

BPBxB) ≤ 1
t
(xT

BpBpT
BxB)(xT

APAxA)

(10)

Since the constant t vanishes from the inequality, which includes the case where
the lower reference point is not changed (t = 1), Theorem 2 is proved.

4.2 Monotonicity

The property of monotonicity may now be stated for the HSR Indicator:
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Theorem 3 (Weak Monotonicity of the Hypervolume Sharpe-Ratio
Indicator). Consider two reference points l, u ∈ R

d and two point sets
A,B ⊂ [l, u[ such that A ≺ B. Then IHSR(A, l, u) ≥ IHSR(B, l, u).

In order to prove this theorem, two auxiliary results are stated first. Lemma 1 is
used to prove Lemma 2, which is then used in the proof of the theorem. Similarly
to expression (4), for any two points a, b ∈ [l, u[, let pab denote the measure of
the region bounded above by u ∈ R

d that is dominated simultaneously by a and
b, and let pa = paa. Note that pc > 0 for any point c ∈ [l, u[.

Lemma 1. Consider two points a, b ∈ [l, u[ such that a < b. Then, for all
c ∈ [l, u[⊂ R

d, pbpac ≤ pbcpa holds.

Proof. Consider w.l.o.g. that l = (0, ..., 0) and u = (1, . . . , 1) and therefore,
Λ([l, u]) = 1. Lemma 1 will be proved by contradiction. Hence, suppose that, for
some choice of c ∈ [l, u[:

pbpac > pbcpa ⇔∏d
i=1 (1 − bi)(1 − max(ai, ci)) >

∏d
i=1 (1 − max(bi, ci))(1 − ai)

(11)

Thus, there should be, at least, a dimension i for which the following holds:

(1 − bi)(1 − max(ai, ci)) > (1 − max(bi, ci))(1 − ai) (12)

However, by manipulating expression (12), it is possible to verify that bi ≥ ci

implies ai > max(ai, ci), and that bi < ci implies ai > bi, which are both untrue.
Consequently, expression (11) does not hold either, and Lemma 1 is proved.

Lemma 2. Consider a point set A = {a(1), . . . , a(n)} ⊂ [l, u[, where n ≥ 2,
and, without loss of generality, assume that a(2) < a(1). Then, the investment
vector x∗ ∈ [0, 1]n that maximizes the Sharpe Ratio for the set A is such that the
investment in a(1), denoted by x∗

1, is zero.

Proof. Note that, for constraint (2b) to be satisfied, there has to be a strictly
positive investment in, at least one asset and thus, all constraints are linearly
independent for any feasible solution to Problem 2. Thus, the prerequisites of the
first-order necessary optimality conditions (KKT conditions) [6] are satisfied.

Following the notation and definitions in Nocedal and Wright [6], the KKT
conditions state that if a feasible solution y∗ is optimal, then there is a Lagrange
multiplier vector λ∗ for which all components associated to an inequality con-
straint are nonnegative and the product of each component of λ∗ and the cor-
responding constraint at y∗ is zero. Moreover, the gradient of the Lagrangian
function w.r.t y∗ is zero (∇yL(y∗, λ∗) = 0). The Lagrangian function, for the
HSR Indicator (in Problem 2) is:

L(y, λ) = yT Py − 1 − λ1p
T y −

n+1∑

i=2

λiyi−1 (13)
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and the corresponding partial derivative w.r.t. yk at (y∗, λ∗) for k = 1, ..., n is:

∂L(y∗, λ∗)
∂yk

= 2
n∑

i=1

piky∗
i − pkλ∗

1 − λ∗
k+1 = 0 (14)

Lemma 2 is proved by contradiction. Let y∗
1 and y∗

2 represent the investments
in a(1) and a(2), respectively. Since a(2) dominates a(1), the following holds:

p1 = p12, p1 < p2 and p1i ≤ p2i, i = 3, . . . , n (15)

Suppose that the optimal investment y∗ is such that y∗
1 > 0. Then, the KKT

conditions imply that λ∗
2 = 0. By manipulating Eq. (14) for k = 1, 2 using the

conditions in (15), the following condition on λ∗
3 is obtained:

p1(p12 − p2)y∗
1 +

n∑

i=3

(p1p2i − p1ip2)y∗
i = p1λ∗

3
2 ≥ 0 (16)

λ∗
3 ≥ 0 must be true so that it is a valid Lagrange multiplier. Therefore, since

p1 > 0, the left-hand side of expression (16) must be zero or positive. However,
the first term is clearly negative since p12 = p1 < p2, and the sum is non-positive
by Lemma 1.

Therefore, no optimal Lagrange multiplier vector λ∗ exists for which the KKT
conditions hold true when y∗

1 is strictly positive, and consequently, y∗ cannot be
optimal. Therefore, y∗

1 = 0 which implies that x∗
1 = 0 and proves Lemma 2.

Proof (Theorem 3). Consider two point sets A,B ⊂ [l, u[⊂ R
d, such that

|A|, |B| ≥ 1 and A ≺ B. Since any points in B−A are dominated points in A∪B,
by Lemma 2 they are assigned zero investment, and IHSR(A∪B) = IHSR(A) must
hold true. Suppose that IHSR(B) > IHSR(A). Then, an investment strategy in
A ∪ B with Sharpe Ratio greater than IHSR(A ∪ B) where zero investment is
given to the points in A − B would exist, which leads to a contradiction and
proves the theorem.

5 Concluding Remarks

The Sharpe-Ratio Indicator class has been formalized, and theoretical results
on the particular HSR Indicator have been presented regarding the indepen-
dence of one of the reference points, scaling independence and the monotonicity
property. Although the formulation of the HSR Indicator involves two reference
points, only one needs to be set in practice. The second reference point is just
a technical parameter that is required by the formulation. Indeed, the optimal
investment is not affected by the linear objective rescaling implied by changes to
this second reference point, and the indicator is scaling independent under such
transformations. Thus, the HSR Indicator does not require more parameters to
be set than, for example, the Hypervolume Indicator. The HSR Indicator is also
weakly monotonic w.r.t. set dominance.

The study of other properties of interest, including optimal μ-distributions
for the HSR Indicator, will be the subject of future work.
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