
k-Bit Mutation with Self-Adjusting
k Outperforms Standard Bit Mutation

Benjamin Doerr1, Carola Doerr2(B), and Jing Yang1

1 École Polytechnique, Palaiseau, France
2 CNRS and Sorbonne Universités, UPMC University Paris 06, LIP6, Paris, France

doerr@lip6.fr

Abstract. When using the classic standard bit mutation operator, par-
ent and offspring differ in a random number of bits, distributed according
to a binomial law. This has the advantage that all Hamming distances
occur with some positive probability, hence this operator can be used, in
principle, for all fitness landscapes. The downside of this “one-size-fits-
all” approach, naturally, is a performance loss caused by the fact that
often not the ideal number of bits is flipped. Still, the fear of getting
stuck in local optima has made standard bit mutation become the pre-
ferred mutation operator.

In this work we show that a self-adjusting choice of the number of
bits to be flipped can both avoid the performance loss of standard bit
mutation and avoid the risk of getting stuck in local optima. We propose
a simple mechanism to adaptively learn the currently optimal mutation
strength from previous iterations. This aims both at exploiting that gen-
erally different problems may need different mutation strengths and that
for a fixed problem different strengths may become optimal in different
stages of the optimization process.

We experimentally show that our simple hill climber with this adap-
tive mutation strength outperforms both the randomized local search
heuristic and the (1+1) evolutionary algorithm on the LeadingOnes func-
tion and on the minimum spanning tree problem. We show via mathe-
matical means that our algorithm is able to detect precisely (apart from
lower order terms) the complicated optimal fitness-dependent mutation
strength recently discovered for the OneMax function. With its self-
adjusting mutation strength it thus attains the same runtime (apart
from o(n) lower-order terms) and the same (asymptotic) 13 % fitness-
distance improvement over RLS that was recently obtained by manually
computing the optimal fitness-dependent mutation strength.

1 Introduction

When using a bit-string representation in evolutionary computation, that is,
when the search space is Ω = {0, 1}n, then standard bit mutation is the by far
most-employed mutation operator. It creates a new individual (offspring) from
an existing one (parent) by flipping each bit of the parent independently with
some probability p, often with p = 1/n. By this, the Hamming distance of parent
c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 824–834, 2016.
DOI: 10.1007/978-3-319-45823-6 77

k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 825

and offspring, that is, the number of positions in which the strings differ, follows
a binomial distribution with parameters n and p. If p = 1/n, then the expected
distance is one (following the idea that mutation should be a minimalistic change
of the individual), but all distances in [0..n] := {0, 1, . . . , n} occur with positive
probability. Consequently, a hill climber using this mutation operator (e.g., the
(1 + 1) evolutionary algorithm (EA)) cannot get permanently stuck in a local
optimum, no matter what the fitness landscape of the underlying optimization
problem looks like.

The downside of this “one-size-fits-all” approach, naturally, is that it does not
exploit particular properties of the landscape. It is well-known (though not in
all cases explicitly proven) that for simple fitness landscapes like those of One-
Max, linear functions, LeadingOnes, and royal-road functions, flipping only
single bits gives smaller optimization times than using standard bit mutation
(often, the improvement is by a factor of e ≈ 2.718). For the minimum spanning
tree (MST) problem, a mutation operator randomly choosing between flipping
a single random bit or two random bits gives again better results than standard
bit mutation, whereas flipping always only one bit or always exactly two bits in
most cases lets the algorithm get stuck in a local optimum.

Our Results: The examples above show that using a problem-specific opti-
mal mutation strength can lead to a fair speed-up over standard bit muta-
tion, however, with the risk of making the algorithm fail badly when choosing a
wrong mutation strength. For this reason, we design a simple hill climber that
autonomously tries to choose the optimal mutation rate by analyzing the past
performance of the different mutation strengths. This aims both at exploiting
that different problems ask for different mutation strengths and at exploiting
that for a fixed problem the optimal mutation strength may change during the
optimization process; a problem even less understood than the right problem-
specific static mutation strength.

We experimentally analyze our new algorithm on the LeadingOnes and
the MST problem. We observe that, for suitable parameter settings, it clearly
outperforms the (1 + 1) EA. Interestingly, it even beats the randomized local
search (RLS) heuristic (flipping always one bit) for the LeadingOnes problem
and the variant of RLS flipping one or two bits for the MST problem. This shows
that for these problems a better performance can be obtained from a mutation
strength that changes over time, and that our algorithm is able to find such
superior fitness-dependent mutation strengths.

The heart of our work is making this effect mathematically precise for One-
Max. For this function, an optimal fitness-dependent mutation strength was
recently found in [4]. This optimal mutation strength is quite particular. It uses,
for all but a lower order fraction of the runtime, the mutation strength one (that
is, flips a random bit). In a short initial segment of the optimization process,
flipping a larger number of bits is superior. The optimal number of bits is decreas-
ing with increasing fitness, but is always an odd number. Despite differing from
RLS only in a short period, the simple hill climber using this fitness-dependent
mutation strength with a fixed budget of iterations computes solutions that have

826 B. Doerr et al.

an expected fitness distance that is 13 % smaller than those computed by RLS,
making it the current best unbiased mutation-based optimizer for OneMax
(cee [8] for a discussion on the fixed-budget performance measure). However,
due to its complicated nature, it is not clear how a non-expert should find such
fitness-dependent mutation strengths.

For our new algorithm with self-adjusting mutation strength, we show that
it essentially is able to find this optimal mutation schedule on the fly. More
precisely, with high probability our algorithm always (apart from a lower-order
fraction of the iterations) uses a mutation strength which gives an expected
progress equal to the best possible progress (again, apart from lower order terms).
Consequently, our algorithm has the same optimization time (apart from an o(n)
additive lower order term) and the same asymptotic 13 % superiority in the fixed
budget perspective as the algorithm with the hand-crafted mutation strength
schedule from [4].

These first results indicate that a self-adjusting mutation strength both works
well for problems with different optimal mutation strengths (in an even better
way than the “one-size-fits-all” approach of standard bit mutation) and, beyond
this, can also find good fitness-dependent mutation schedules. We defer the
details to the following sections, where we propose our new algorithm (Sect. 2),
give some experimental evidence for its superiority (Sect. 3), conduct a rigorous
runtime analysis for OneMax (including the proof that the optimal mutation
strength essentially is always employed) in Sect. 4, and discuss how to choose
parameters and take other design choices (Sect. 5).

Discussion of Previous Works on Adaptive Mutation Operators: Given
the importance of mutation, not surprisingly, there is a plethora of works on
adaptive uses of mutation. With very few exceptions, these works are experimen-
tal in nature. They mostly indicate that an adaptive change of how mutation is
performed can be beneficial. However, it seems hard to derive generally accepted
design rules from these works. For reasons of space, we cannot avoid referring
the reader to some of the central works [1,5,9,12] and the extensive follow-up
work.

On the theoretical side, a first dynamic setting of the mutation rate was
proposed and analyzed in [7]. They propose to use the (1 + 1) EA with a muta-
tion rate that, depending on the iteration counter, takes a value in {2k/n |
k = 0, 1, 2, . . . , �log2(n)� − 2}. They construct an example function where the
(1 + 1) EA with this dynamic mutation rate greatly outperforms the (1 + 1) EA
with any fixed mutation rate. However, they also show that their EA has an
asymptotically larger runtime on most classic test functions. In [2], a fitness-
dependent choice of the mutation rate was proposed that improves the runtime
of the (1 + 1) EA on the LeadingOnes function from approximately 0.86n2

for the fixed mutation probability 1/n to approximately 0.68n2. For population-
based EAs a rank-based mutation rate has been investigated in [11].

All of the works discussed above use standard bit mutation, that is, flip each
bit independently with a certain, adaptively chosen, probability p. Our main
point in this work is that flipping a fixed number of r bits, where the mutation

k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 827

Algorithm 1. RLS with fitness-dependent mutation strength. When max-
imizing functions f : {0, 1}n → D, the algorithm takes as parameter a
mutation strength function r : D → [1..n] describing how many bits to flip
given a certain fitness of the current search point. The operator flip(x, r)
generates from x a new search point by flipping exactly r random bit
positions.
1 Initialization: Choose x ∈ {0, 1}n uniformly at random;
2 Optimization: for t = 1, 2, 3, . . . do
3 y ← flip(x, r(f(x)));
4 if f(y) ≥ f(x) then x ← y;

strength r is chosen in a self-adjusting manner, is more profitable because it
greatly reduces the use of r-bit flips with a sub-optimal mutation strength r. We
are not aware of any work on this type of self-adjusting mutation. An optimal
fitness-dependent choice of r for OneMax was determined in [4] recently.

2 Randomized Local Search with Fitness-Dependent
and Self-adjusting Mutation Strength

In [4], a variant of the classic randomized local search (RLS) heuristic with fitness-
dependent mutation strength was proposed (Algorithm1). Whereas the classic
version of RLS creates a new search point always by flipping a single random bit,
RLS with fitness-dependent mutation strength flips a number of bits (“mutation
strength”) functionally depending on the current fitness.

While it is clear that choosing the best mutation strength for each fitness
level can improve the performance, it is not so clear how to find a good muta-
tion strength function. The example of OneMax studied in [4] indicates that a
substantial understanding of the underlying optimization problem is necessary
to profit from varying the mutation strength depending on the fitness.

To overcome this difficulty, in this work we propose to choose the mutation
strength in each iteration based on the experience in the optimization process so
far. We enforce gaining a certain experience by designating each iteration with
probability δ as a learning iteration. In a learning iteration we flip a random num-
ber of bits (chosen uniformly at random from a domain [1..rmax]) and store (in an
efficient manner) the progress made in these iterations. In all regular iterations, we
use the experience made in these learning iterations to determine the most promis-
ing mutation strength and create the offspring with this mutation strength.

More precisely, let us denote by xt the search point after the t-th iteration,
that is, after the mutation and selection step of iteration t. Denote by x0 the
random initial search point. If t is a learning iteration, denote by rt the random
mutation strength r used in this iteration. Otherwise set rt = 0.

The main idea of our algorithm is to learn the efficiency of the mutation
strengths, that is, the expected progress made when flipping r bits, for all

828 B. Doerr et al.

r ∈ [1..rmax]. We do so via a time-discounted average of the progresses observed
in the learning iterations: We define an estimate for the future progress, called
velocity in the absence of a better name, after the t-th iteration by

vt[r] :=
∑t

s=1 1rs=r(1 − ε)t−s(f(xs) − f(xs−1))
∑t

s=1 1rs=r(1 − ε)t−s
. (1)

In this expression, the parameter ε, called forgetting rate, determines the decrease
of the importance of older information. Since (1 − ε)1/ε = (1/e) + o(1) for all
ε = o(1), the reciprocal 1/ε of the forgetting rate is (apart from constant factors)
the information half-life.

We first observe that we can compute the velocities iteratively and thus,
unlike equation (1) might suggest, do not need to store the full history of the
learning iterations. To this aim, we need to store one additional value for each r,
namely the sum of the (1 − ε)t−s terms used in the weighted average, that is,

wt[r] :=
t∑

s=1

1rs=r(1 − ε)t−s.

Then the following recursive description of the velocities and weight sums is
easily seen: If in iteration t + 1 we have not done a learning step with mutation
strength r, that is, rt+1 �= r, then vt+1[r] = vt[r] and wt+1[r] = (1 − ε)wt[r]. If
rt+1 = r, then

vt+1[r] =
(1 − ε)wt[r]vt[r] + f(xt+1) − f(xt)

(1 − ε)wt[r] + 1
,

wt+1[r] = (1 − ε)wt[r] + 1.

For exploiting the experience gained in the learning iterations, we adopt a
greedy strategy and always choose the mutation strength with highest velocity
(breaking ties randomly, but giving preference to the previous-best mutation
strength). While we generally postpone a discussion on parameter settings and
other design choices to Sect. 5, let us remark already here that our greedy choice
of the mutation strength might be detrimental for fitness landscapes in which the
optimal mutation strength changes very frequently. There a velocity-weighted
random choice might be more fruitful.

From this discussion, we derive the algorithm RLS with self-adjusting muta-
tion strength (Algorithm 2).

3 Experimental Results

In this section we describe some experimental results for our algorithm. These are
by no means intended to account for a thorough scientific investigation, both for
reasons of space and because we feel that the mathematical investigation in the
subsequent section is more insightful, also with respect to why the proposed ideas

k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 829

Algorithm 2. RLS with self-adjusting mutation strength. The parameters
of the algorithm are the maximum mutation strength rmax, the learning
rate δ, and the forgetting rate ε.
1 Initialization:
2 Choose x ∈ {0, 1}n uniformly at random;
3 for r = 1 to rmax do v[r] := 0 and w[r] := 0 ;
4 r∗ ← 1;
5 Optimization: for t = 1, 2, 3, . . . do
6 z ← random([0, 1]);
7 if z ≤ δ then % learning iteration
8 r ← random({1, . . . , rmax});
9 y ← flip(x, r);

10 v[r] ← (1−ε)w[r]v[r]+max{0,f(y)−f(x)}
(1−ε)w[r]+1

;

11 w[r] ← (1 − ε)w[r] + 1;
12 if f(y) ≥ f(x) then x ← y;
13 for r′ ∈ {1, . . . , rmax} \ {r} do w[r′] ← (1 − ε)w[r′];

14 else
15 r+ ← random(argmaxr(v[r]));
16 if v[r+] > v[r∗] then r∗ ← r+;
17 y ← flip(x, r∗);
18 if f(y) ≥ f(x) then x ← y;
19 for r ∈ {1, . . . , rmax} do w[r] ← (1 − ε)w[r];

work well. Nevertheless, the experimental results indicate that our new algorithm
gives good results also for problems other than OneMax, they give some hints
on how to choose the parameters rmax, δ and ε (more on this in Sect. 5), and
they taught us that finding suitable parameters was not very difficult—we were
immediately faster than the (1 + 1) EA and with at most a few trials were able
to beat RLS. All experiments were repeated 100 times; all numbers given below
are the averages of these 100 runs.

LeadingOnes Function: The LeadingOnes function is defined by Lo(x) :=
max{i ∈ [0..n] | ∀j ≤ i : xj = 1}, that is, it counts, starting from the
left end, how many consecutive ones the bit-string x contains. The expected
optimization time (number of iterations until the optimum is found) for RLS
is 0.5n2 ± O(n), that of the (1 + 1) EA with mutation rate p = 1/n is
0.5n2(1−1/n)((1−1/n)−n −1) = 0.5(e−1)n2 ±O(n) ≈ 0.8591n2. When taking
the asymptotically optimal mutation rate of approximately 1.59/n, the opti-
mization time drops to approximately 0.7720n2. When taking a (best-possible)
fitness-dependent mutation rate of pi = 1/(i+ 1) at fitness i, then the optimiza-
tion time drops to (e/4)n2 ± O(n) ≈ 0.6796n2 [2].

Experimentally, for n = 10, 000 and taking the parameters rmax = 5, δ = 0.1
and ε = 1/(5, 000, 000), we observed an average optimization time of 45.0 million

830 B. Doerr et al.

iterations, that is, 0.450n2, which clearly beats RLS and all (1 + 1) EA results
described above. The relative standard deviation is low, 4.36% to be precise.1

Minimum Spanning Trees: Given a connected undirected graph G = (V,E)
with edge weights w : E → R>0, the minimum spanning tree problem asks for
finding a tree in G that connects all vertices and that has minimal total weight.
This problem can be solved via evolutionary methods by taking a bit-string
representation (each bit describes whether some edge is part of the tree or not)
and taking as fitness function (to be minimized) the sum of the weights of the
edges in the string representation plus a punishment term for each connected
component (except the first one). For this representation of the problem, both
RLS (flipping one or two bits with equal probability) and the (1 + 1) EA find
an optimal solution in any input in expected time O(|E|2 log(|E|wmax), where
wmax is the maximum weight of an edge (see [10]).

We ran the following experiments. We took as graph G the complete graph
on 50 vertices (hence |E| = 1225) with edge weights chosen independently at
random in [0, 1], thus having a unique minimum spanning tree. On this instance,
RLS in the variant that flips either one or two bits (random choice between these
two alternatives) took 5.08·106±37.75% iterations. Our algorithm with rmax = 5,
δ = 0.1, and ε = 1/(20, 000) took 2.70 · 106 ± 36.34% iterations. Analyzing these
runs in more detail, we observe that the preferred mutation strength r after a
short initial phase takes the maximum value 5, then decreases to one, and finally
goes back to two, which is then used for the large remainder of the optimization
process. For reasons of computation time, we could not evaluate the (1 + 1) EA
on graphs on 50 vertices. For graphs on 20 vertices, the (1 + 1) EA was roughly
2.7 times slower than RLS.

4 Mathematical Runtime Analysis on OneMax

In this section, we analyze via mathematical means how our algorithm optimizes
OneMax. This is an asymptotic analysis in terms of the problem size n. We
refer to the previous well-established runtime analysis literature for more details
on the motivations of mathematical runtime analysis and on the meaning of
asymptotic results, cf. [6].

The main result of this section is a proof that our algorithm with reasonable
parameter settings very precisely detects the optimal mutation strength. It thus,
apart from the learning iterations, has the same performance as the recently
proposed randomized local search algorithm with fitness-dependent mutation
strength [4]. The main technical challenge in this analysis are the dependencies
between the progress of the algorithm and the learning system trying to estimate
the velocities. We overcome these, among others, via a domination argument
developed in [3, Lemma 1.20].

Throughout this section, we assume that rmax is a constant independent of n.
For simplicity, we only regard the parameters ε = n−0.99 and δ = n−0.01 but
1 We report in the following the mean and relative standard deviations of our experi-

ments by expressing, for example, the previous numbers as 45.0 · 106 ± 4.36 %.

k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 831

remark that broader ranges of these parameters would work as well. In addition
to the notation introduced in Sect. 2, we write r∗

t for the number of bits flipped
in a non-learning iteration. We also define the fitness distance d(x) = n − f(x)
for all x ∈ {0, 1}n.

For reasons of space, all proofs had to be removed from this extended
abstract. They will be made available in a full journal version.

The following lemma states that, apart from an initial segment of the opti-
mization process, the values of wt[r] can essentially assumed to be constant over
time.

Lemma 1. Let r ∈ [1..rmax], t ≥ H := (1/ε) ln(n) and w∗ := δ/rmaxε. Then
with probability 1 − exp(−nΩ(1)), |wt[r] − w∗| ≤ w∗O(n−0.002).

The following two lemmas show how well our learning mechanism is able
to detect the currently most profitable mutation strength. We denote in the
following the progress from flipping r bits when in distance d from the optimum
by Xr

d := max{d(x)−d(flip(x, r)), 0}, where x is any search point with d(x) = d.

Lemma 2. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε)2 ln(n). Then
with probability at least 1 − exp(−nΩ(1)), we have vt+H [r] ≤ (1 +
O(n−0.002))max{E[Xr

d(xt+H)], (ε/δ)n0.01}.

Lemma 3. Let r ∈ [1..rmax], t ≥ 1 and H = (1/ε) ln(n). Assume that
E[Xr

d(xt+H)] = Ω(n0.01ε/δ). Then with probability at least 1 − exp(−nΩ(1)), we
have vt+H [r] ≥ (1 − O(n−0.002))E[Xr

d(xt+H)].

The fact that our algorithm very precisely detects the optimal mutation
strength implies that its fitness progress in each iteration is very close to the
maximum possible (Theorem 1) and that it has a performance very close to the
algorithm developed in [4] (Theorem 2).

Theorem 1. Let T be the optimization time of our algorithm with parameters
δ = n−0.01 and ε = n−0.99 on OneMax. Let T ′ = min{T, 2n ln(n)}. Then with
probability at least 1−O(n0.19), for each non-learning iteration t ∈ [2 ln(n)/ε, T ′],
we have E[Xr∗

t

d(xt−1)
] ≥ (1 − O(n−0.002))max{E[Xr

d(xt−1)
] | r ∈ [1..rmax]}.

Theorem 2. Let Trmax be the minimal expected runtime on the OneMax
problem among all randomized local search algorithms with fitness-dependent
mutation strength flipping at most rmax bits. Then the expected runtime T of
our algorithm A is at most Trmax + o(n). Consequently, by taking rmax large
enough, our algorithm has the same expected runtime (apart from o(n) terms)
as the algorithm using the optimal fitness-dependent mutation strength of [4].
Also, let xA be the current solution of our algorithm and xRLS be the cur-
rent solution of randomized local search after a fixed budget of B ≥ 0.2675n
iterations. Then the expected Hamming distances to the optimum x∗ satisfy
E[H(xA, x∗)] ≤ (1 + o(1))0.872E[H(xRLS , x∗)].

832 B. Doerr et al.

5 Parameter Choice and Design Alternatives

In this work we have proposed and analyzed a first hill climber that adaptively—
based on previous fitness improvements—decides how many bits to flip in the
mutation step. The required design choices were influenced by the positive exper-
imental results and by our desire to prove with mathematical means that this
algorithm tracks well the optimal mutation strength recently exhibited for One-
Max. We now discuss two design variants that might prove useful for other
optimization problems and give some general hints on how to choose the para-
meters of the algorithm.

A first observation is that our algorithm does not necessarily converge to
an optimal solution. If there are local optima that can only be left by flipping
more than rmax bits, then our algorithm has a positive probability of being stuck
in such an optimum indefinitely. A simple way to overcome this is to use the
mechanism proposed in this work only to redistribute the probability mass on
r-bit-flips with r ∈ [1..rmax] and keep the probability distribution from stan-
dard bit mutation for the rest. In other words, in the main optimization loop
in a non-learning iteration with probability Pr[B(n, 1/n) > rmax], the algorithm
determines r according to the binomial distribution B(n, 1/n) conditional on
being greater than rmax; and it determines r from the learned velocities other-
wise. This obviously ensures that the algorithm converges.

A second observation is that the highly greedy choice of r as the maximizer
of the learned velocities might be too greedy for less well-behaved optimization
problems in which the ideal mutation strength changes very frequently. In such
situations it might be preferable to use the learned velocities only to give a mild
preference to seemingly more profitable strengths. For example, in line 15 of
Algorithm 2 one could choose r+ with probability proportional to v[r] and then
flip r+ bits.

A final modification that we want to propose is to use the progress expe-
rienced in any iteration (and not only the learning iterations) to update the
velocities. Our update rule is designed in a way that different frequencies of the
r values impose no problems. Hence in a sense, we are currently wasting the
information available from the non-learning iterations. Our main motivation for
doing so is that the mathematical analysis would have been more difficult, in
particular, Lemma 1 would not be true with updates in each iteration. In exper-
iments, the version with updates in each iteration usually, but not consistently,
performed better.

A word on the parameters: it seems advisable to choose rmax small, because
the learning effort is proportional to rmax and because in the vast majority of the
iterations a small r was optimal. In our experiments, we always obtained good
results with rmax = 5, but we admit that in this first study we have not conducted
an exhaustive series of experiments (also not for the other parameters). For the
learning rate δ, we obtained good results with δ = 0.1. It is immediately clear
that δ(1−1/rmax) is the rate of iterations using a non-optimal mutation strength
(unless two strengths are equally good), which gives some motivation to keep δ
small. Of course, often a non-optimal mutation strength still has a reasonable

k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation 833

chance of giving progress, so these iterations often are not completely wasted
(that is, only spent on learning and not on optimization). The parameter hardest
to set is ε. A large value implies that we quickly forget the outcomes of previous
iterations. This may allow a quick adaption to a changed environment, but also
carries the risk that a rare exceptional success with a non-ideal r-value has a
too large influence. In our experiments, the latter aspect was seemingly more
dominant and we obtained the best results with relatively small ε-values like
0.01 or even the reciprocal of 0.1 times the expected total number of iterations.

6 Conclusion

We proposed and analyzed a simple hill climber using k-bit flips with a self-
adjusting choice of the mutation strength k. This use of k-bit flips instead of
the usually preferred standard bit mutation with its random mutation strength
allowed to much better exploit the most effective mutation strength. At the same
time, the self-adjusting choice allowed to find the optimal mutation strength
automatically and on-the-fly. By this, also the risk of getting stuck in local
optima, the known draw-back of k-bit flips, was overcome. We are confident
that replacing standard bit mutation by k-bit flips with a self-adjusting choice
of k will lead to performance gains for many optimization problem beyond the
ones regarded in this work.

References

1. Bäck, T.: An overview of parameter control methods by self-adaption in evolution-
ary algorithms. Fundam. Inform. 35(1–4), 51–66 (1998)

2. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010)

3. Doerr, B.: Analyzing randomized search heuristics: tools from probability theory.
In: Auger, A., Doerr, B. (eds.) Theory of Randomized Search Heuristics, pp. 1–20.
World Scientific Publishing, Singapore (2011)

4. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box
analysis. In: GECCO 2016. ACM (2016, to appear)

5. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

6. Jansen, T.: Analyzing Evolutionary Algorithms–The Computer Science Perspec-
tive. Natural Computing Series. Springer, Heidelberg (2013)

7. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J.
Discrete Algorithms 4, 181–199 (2006)

8. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics oper-
ating with a fixed budget. Theor. Comput. Sci. 545, 39–58 (2014)

9. Karafotias, G., Hoogendoorn, M., Eiben, A.: Parameter control in evolutionary
algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

834 B. Doerr et al.

10. Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theor. Comput. Sci. 378, 32–40 (2007)

11. Oliveto, P.S., Lehre, P.K., Neumann, F.: Theoretical analysis of rank-based muta-
tion - combining exploration and exploitation. In: CEC 2009, pp. 1455–1462. IEEE
(2009)

12. Thierens, D.: Adaptive mutation rate control schemes in genetic algorithms. In:
CEC 2002, pp. 980–985. IEEE (2002)

	k-Bit Mutation with Self-Adjusting k Outperforms Standard Bit Mutation
	1 Introduction
	2 Randomized Local Search with Fitness-Dependent and Self-adjusting Mutation Strength
	3 Experimental Results
	4 Mathematical Runtime Analysis on OneMax
	5 Parameter Choice and Design Alternatives
	6 Conclusion
	References

