
Selection Hyper-heuristics Can Provably
Be Helpful in Evolutionary Multi-objective

Optimization

Chao Qian1,2(B), Ke Tang1, and Zhi-Hua Zhou2

1 UBRI, School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230027, China

{chaoqian,ketang}@ustc.edu.cn
2 National Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing 210023, China
zhouzh@nju.edu.cn

Abstract. Selection hyper-heuristics are automated methodologies for
selecting existing low-level heuristics to solve hard computational prob-
lems. They have been found very useful for evolutionary algorithms when
solving both single and multi-objective real-world optimization prob-
lems. Previous work mainly focuses on empirical study, while theoreti-
cal study, particularly in multi-objective optimization, is largely insuffi-
cient. In this paper, we use three main components of multi-objective
evolutionary algorithms (selection mechanisms, mutation operators,
acceptance strategies) as low-level heuristics, respectively, and prove that
using heuristic selection (i.e., mixing low-level heuristics) can be expo-
nentially faster than using only one low-level heuristic. Our result pro-
vides theoretical support for multi-objective selection hyper-heuristics,
and might be helpful for designing efficient heuristic selection methods
in practice.

1 Introduction

Hyper-heuristics are automated methodologies for selecting or generating heuris-
tics to solve hard computational problems [4]. There are two main hyper-heuristic
categories: heuristic selection and heuristic generation. This paper focuses on
the former type. Given a set of low-level heuristics, a heuristic selection method
chooses an appropriate one to be applied at each decision point.

Selection hyper-heuristics have been widely and successfully applied for evo-
lutionary algorithms (EAs) solving single-objective optimization problems such
as personnel scheduling, packing, vehicle routing, etc [3]. After that, they start
to emerge in evolutionary multi-objective optimization. Burke et al. [5] first
proposed a multi-objective hyper-heuristic approach based on tabu search for

This work was supported by the NSFC (61333014, 61329302), the Fundamental
Research Funds for the Central Universities (WK2150110002), and the Collaborative
Innovation Center of Novel Software Technology and Industrialization.

c© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 835–846, 2016.
DOI: 10.1007/978-3-319-45823-6 78

836 C. Qian et al.

the space allocation and timetabling problems. McClymont and Keedwell [17]
developed a Markov chain based hyper-heuristic method for designing water dis-
tribution network. By using NSGAII, SPEA2 and MOGA as low-level heuristics,
Maashi et al. [16] designed a choice function based hyper-heuristic to solve the
vehicle crashworthiness design problem. Selection hyper-heuristics also achieved
successes in other real-world multi-objective optimization problems, e.g., the 2D
guillotine strip packing problem [18] and the integration and test order problem
in software engineering [10].

Most previous work focuses on empirical study. Meanwhile, theoretical analy-
sis, particularly running time analysis, is important for enhancing our under-
standing and designing efficient hyper-heuristics, as Burke et al. stated in [3].
However, the running time analysis on selection hyper-heuristics is difficult due
to their complexity and randomness, and few results have been reported. By
using mutation operators as low-level heuristics, He et al. [11] first gave some
conditions under which the asymptotic hitting time of the (1+1)-EA (a simple
EA) with a mixed strategy is not larger than that with any pure strategy. Note
that a mixed strategy (which corresponds to heuristic selection) chooses one low-
level heuristic according to some distribution each time, while a pure strategy
uses only one fixed low-level heuristic. Their result was then extended to the
expected running time measure and to population-based EAs in [12]. Lehre and
Özcan [15] later gave concrete evidence that mixing two specific mutation oper-
ators is more efficient than using only one operator for the (1+1)-EA solving the
GapPath function. They also proved the benefit of mixing acceptance strategies
for the (1+1)-EA solving the RRk function. In [19], by mixing global and local
mutation operators, the (1+1)-EA was proved to be a polynomial time approxi-
mation algorithm for the NP-hard single machine scheduling problem. In [6], the
(1+1)-EA mixing two specific mutation operators was shown to be able to solve
the easiest function for each mutation operator efficiently. The above studies
investigate whether selection hyper-heuristics can bring an improvement on the
performance. Alanazi and Lehre [1] also compared different heuristic selection
methods (i.e., mixed strategies with different distributions), and proved their
similar performance for the (1+1)-EA solving the LeadingOnes function.

All of the above-mentioned studies consider single-objective optimization.
To the best of our knowledge, there has been no theoretical work supporting
the effectiveness of selection hyper-heuristics in multi-objective optimization. In
this paper, we prove that using heuristic selection can speed up evolutionary
multi-objective optimization exponentially via rigorous running time analysis.
The widely used multi-objective EA GSEMO in previous theoretical analy-
ses [8,14,21] is employed. It repeats three steps: choosing a solution by some
selection mechanism, reproducing a new solution by mutation, and updating
the population by some acceptance strategy. This paper considers the three
main components of GSEMO, i.e., selection mechanism, mutation operator and
acceptance strategy, as the low-level heuristic, respectively. For each kind of
low-level heuristic, we give a bi-objective pseudo-Boolean function, and prove
that the expected running time of GSEMO with a mixed strategy is polynomial

Selection Hyper-heuristics Can Provably Be Helpful 837

while GSEMO with a pure strategy needs at least exponential running time. The
analysis also shows that the helpfulness of selection hyper-heuristics is because
the strengths of one heuristic can compensate for the weaknesses of another. For
mixing acceptance strategies, we also empirically compare the running time of
GSEMO with different mixed strategies, and the results imply the importance
of choosing a proper heuristic selection method.

The rest of this paper is organized as follows. Section 2 introduces some pre-
liminaries. The helpfulness of mixing selection mechanisms, mutation operators
and acceptance strategies is then theoretically analyzed. Finally, we conclude
the paper.

2 Preliminaries

Multi-objective optimization requires to simultaneously optimize two or more
objective functions, as shown in Definition 1. Note that maximization is con-
sidered in this paper. The objectives are usually conflicted, and thus there is
no canonical complete order on the solution space X . The comparison between
solutions relies on the domination relationship, as presented in Definition 2.
A solution is Pareto optimal if there is no other solution in X that dominates
it. The set of objective vectors of all the Pareto optimal solutions constitutes
the Pareto front. The goal of multi-objective optimization is to find the Pareto
front, that is, to find at least one corresponding solution for each element in the
Pareto front. In this paper, we consider the Boolean space, i.e., X = {0, 1}n.

Definition 1 (Multi-objective Optimization). Given a feasible solution
space X and objective functions f1, . . . , fm, multi-objective optimization can be
formulated as

maxx∈X
(
f1(x), f2(x), ..., fm(x)

)
.

Definition 2 (Domination). Let f = (f1, f2, . . . , fm) : X → R
m be the objec-

tive vector. For two solutions x and x′ ∈ X :

1. x weakly dominates x′ if, ∀1 ≤ i ≤ m, fi(x) ≥ fi(x′), denoted as x � x′;
2. x dominates x′ if, x � x′ and fi(x) > fi(x′) for some i, denoted as x � x′.

Evolutionary algorithms (EAs) have become a popular tool for multi-
objective optimization, due to their population-based nature. In previous the-
oretical studies, GSEMO is the most widely used multi-objective EA (MOEA)
[8,14,21]. As described in Algorithm 1, it first randomly selects an initial solu-
tion, then repeats the three steps (selection, mutation, acceptance) to improve
the quality of the population. In selection, a solution is uniformly selected from
the current population; in mutation, a new solution is generated by flipping each
bit of the selected solution with probability 1

n ; in acceptance, the new solution
is compared with the solutions in the population, and then only non-dominated
solutions are kept. Although simple, GSEMO explains the common structure of
various MOEAs, and hence will be used in this paper as well.

838 C. Qian et al.

Algorithm 1. GSEMO
Given the solution space X = {0, 1}n and the objective function vector f , GSEMO
consists of the following steps:

1: Choose x ∈ X uniformly at random
2: P ← {x}
3: repeat
4: [Selection] Choose x from P uniformly at random
5: [Mutation] Create x′ by flipping each bit of x with probability 1/n
6: [Acceptance] if �z ∈ P such that z � x′

7: P ← (P − {z ∈ P | x′ � z}) ∪ {x′}
8: end if
9: until some criterion is met

Selection hyper-heuristics manage a set of low-level heuristics, and select an
appropriate one to be applied at each decision point. Despite their practical
successes, the theoretical analysis is still in its infancy, particularly for multi-
objective optimization. In this paper, we take the three components of GSEMO,
i.e., selection, mutation and acceptance, as the low-level heuristic, respectively,
and compare the performance of GSEMO with a mixed strategy and a pure strat-
egy. For each component of GSEMO, we will use two concrete low-level heuristics.
A typical mixed strategy employed in our analysis (denoted by GSEMOp) is to
use the first low-level heuristic with probability p ∈ [0, 1] in each iteration of
GSEMO, and use the second one otherwise. Note that a mixed strategy corre-
sponds to using heuristic selection, while a pure strategy only uses one specific
low-level heuristic and thus implies that heuristic selection is not employed.

The performance of the comparison algorithms is measured by their running
time complexity. Note that running time analysis has been a leading theoretical
aspect for randomized search heuristics [2,20]. The running time of a MOEA is
usually counted by the number of fitness evaluations (the most costly computa-
tional process) until finding the Pareto front [8,14,21].

3 Mixing Selection Mechanisms

In this section, we use two fair selection mechanisms [9,14] as low-level heuristics:

– fair selection w.r.t. the decision space: Each solution in the current
population has a counter c1, which records the number of its offsprings.
The solution with the smallest c1 value will be selected for reproduction
in each iteration. That is, line 4 of Algorithm1 changes to be “Choose
x ∈ {y ∈ P | c1(z) ≥ c1(y),∀z ∈ P} uniformly at random”.

– fair selection w.r.t. the objective space: Each counter (denoted as c2) is
associated with an objective vector rather than a decision vector. Line 4 thus
changes to be “Choose x ∈ {y ∈ P | c2(f(z)) ≥ c2(f(y)),∀z ∈ P} uniformly
at random”.

Selection Hyper-heuristics Can Provably Be Helpful 839

Fairness is employed to balance the number of offsprings of all solutions in the
current population, and thus to achieve a good spread over the Pareto front.
GSEMO with these two mechanisms are denoted by GSEMOds and GSEMOos,
respectively. For GSEMO with the mixed strategy (denoted by GSEMOp), it uses
the fairness w.r.t the decision space with probability p ∈ [0, 1] in each iteration;
otherwise, it uses the fairness w.r.t the objective space. Note that GSEMOds

and GSEMOos are GSEMOp with p = 1 and p = 0, respectively.
We then compare their running time on the ZPLG function. As shown in

Definition 3, ZPLG can be divided into three parts: ZeroMax, a plateau, and a
path with little gaps. It is obtained from the PLG function in [9] by replacing
the second objective value 1 in the ZeroMax part with 2. The Pareto front is
{(n, 2), (n + 1, 1), (9n

8 + 2, 0)}, and the corresponding Pareto optimal solutions
are 0n, SP1 and 1n, respectively.

Definition 3 (ZPLG).

ZPLG(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 2) x /∈ SP1 ∪ SP2

(n + 1, 1) x ∈ SP1

(n + 2 + i, 0) x = 13n/4+2i0n/4−2i ∈ SP2,

where |x|0 =
∑n

j=1(1 − xj) denotes the number of 0-bits, SP1 = {1i0n−i | 1 ≤
i < 3n/4}, SP2 = {13n/4+2i0n/4−2i | 0 ≤ i ≤ n/8} and n = 8m,m ∈ N.

Theorem 1 shows that GSEMO with a pure strategy needs exponential run-
ning time with a high probability. The result of GSEMOos on ZPLG is directly
from that on the PL function (i.e., Theorem 1) in [9], since ZPLG has the same
structure as PL by treating its SP2 part as a whole. The inefficiency is because
GSEMOos allows the Pareto optimal solution 0n to generate new solutions in
SP1, which stop the random walk on the plateau SP1 and thus prevent from
reaching SP2. The result of GSEMOds on ZPLG can be directly from that on the
PLG function (i.e., Theorem 4) in [9], since their proof relies on SP1 and SP2,
which are the same for ZPLG and PLG. The inefficiency is because GSEMOds

easily gets trapped in the random walk on SP1, which prevents from following
the path SP2 to find the Pareto optimal solution 1n. We then prove in Theorem 2
that by using the mixed strategy, GSEMOp can solve ZPLG in polynomial run-
ning time. The idea is that first employing GSEMOds allows the random walk
on SP1 to reach SP2, and then employing GSEMOos allows following the path
SP2 to find 1n. Thus, we can see that the advantage of using heuristic selec-
tion is that the strengths of one heuristic can compensate for the weaknesses of
another.

Theorem 1. On ZPLG, the running time of GSEMOds is 2Ω(n1/2) with prob-
ability 1 − 2−Ω(n1/2), and that of GSEMOos is 2Ω(n1/4) with probability 1 −
e−Ω(n1/3).

Theorem 2. The expected running time of GSEMOp with p=1− 1
n3 on ZPLG

is O(n6).

840 C. Qian et al.

Proof. We divide the optimization process into two phases: (1) starts after ini-
tialization and finishes until the population P contains 0n, a solution from SP1

and a solution from SP2; (2) starts after phase (1) and finishes until P contains
0n, a solution from SP1 and 1n, i.e., the Pareto front is found.

For the first phase, we can follow the analysis of GSEMOds on PL (i.e.,
Theorem 2) in [9]. In their proof, the only part relying on the fair selection w.r.t.
the decision space is to allow a consecutive random walk of length δn3 (δ is
a constant) on the plateau SP1, under the condition that the c1 value of the
maintained solution from SP1 is always smaller than that of the Pareto optimal
solution 0n. Note that the fair selection w.r.t. the decision space is used with
probability 1−1/n3 in each iteration of GSEMOp. Such a random walk happens
with probability (1 − 1

n3)δn3 ≥ (2e)−δ ∈ Ω(1). Thus, the asymptotic running
time is not affected, and the expected running time of this phase is the same as
that of GSEMOds on PL, i.e., O(n3 log n).

For the second phase, the population P always contains three solutions, 0n,
a solution from SP1 and a solution from SP2. The probability that a better
solution from SP2 is found under the condition that a solution from SP2 has
been selected for mutation is at least 1

n2 (1− 1
n)n−2 ≥ 1

en2 , since it is sufficient to
flip the leftmost two 0-bits. It is easy to see that at most n

8 such improvements
are sufficient to find the Pareto optimal solution 1n. The worst case is reached
when the first found solution from SP2 is 13n/40n/4. We consider that the fair
selection w.r.t. the objective space is used, which happens with probability 1

n3

in each iteration of GSEMOp. Because the c2 values of (n, 2) and (n+1, 1) (i.e.,
the objective vectors of 0n and the solution from SP1) are never decreased, the
solution from SP2 is selected for reproduction at least once in three consecutive
iterations. Thus, the expected running time of this phase is at most n3 ·3· n

8 ·en2 ∈
O(n6).
�

4 Mixing Mutation Operators

In this section, we use two mutation operators [15] as low-level heuristics:

– one-bit mutation: Line 5 of Algorithm 1 changes to be “Create x′ by flipping
one randomly chosen bit of x”. Note that one specific bit is chosen with
probability 1

n .
– two-bit mutation: Line 5 of Algorithm 1 changes to be “Create x′ by flipping

two different and randomly chosen bits of x”. Note that two specific bits are
chosen with probability 1/

(
n
2

)
= 2

n(n−1) .

GSEMO with these two operators are denoted by GSEMO1b and GSEMO2b,
respectively. GSEMO with the mixed strategy (denoted by GSEMOp) uses one-
bit mutation with probability p ∈ [0, 1] in each iteration; otherwise, it uses
two-bit mutation.

We then compare their running time on the SPG function. As shown in
Definition 4, SPG has a short path SP with increasing fitness except the
solutions 1i0n−i with i mod 3 = 1. The construction of SPG is inspired from

Selection Hyper-heuristics Can Provably Be Helpful 841

the GapPath function in [15]. The Pareto front is {(n, 1), (n2, 0)}, and the cor-
responding Pareto optimal solutions are 0n and 1n, respectively.

Definition 4 (SPG).

SPG(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ SP

(−1, 0) x = 1i0n−i ∈ SP, i mod 3 = 1
(in, 0) x = 1i0n−i ∈ SP, i mod 3 = 0 or 2,

where SP = {1i0n−i | 1 ≤ i ≤ n} and n = 3m,m ∈ N.

The following two theorems show that the expected running time of GSEMO
with a pure strategy is infinite while that of GSEMO with the mixed strategy is
polynomial. The proof idea is straightforward. In every three adjacent solutions
on the path SP , there is a bad one 1i0n−i with i mod 3 = 1. Using one-bit and
two-bit mutation alternatively can jump over those bad solutions on SP and
finally reach the Pareto optimal solution 1n, while using only one-bit or two-bit
mutation obviously will get stuck in some solution 1i0n−i with i mod 3 = 0 or 2.

Theorem 3. The expected running time of GSEMO1b and GSEMO2b on SPG
is infinite.

Proof. We consider that the initial solution is the Pareto optimal solution 0n,
which has the objective vector (n, 1). This happens with probability 1

2n due to
the uniform sampling. For GSEMO1b, one-bit mutation on 0n can only generate
solutions with the objective vector (n− 1, 1) or (−1, 0), which are dominated by
0n. Thus, the population P will always contain only 0n. For GSEMO2b, two-bit
mutation on 0n generates solutions with the objective vector (n−2, 1) or (2n, 0).
Thus, P contains 0n and 120n−2 after a while. Since two-bit mutation on 120n−2

cannot generate better solutions on SP , P will always keep in this state. Thus,
starting from 0n, either GSEMO1b or GSEMO2b cannot find the Pareto front,
which implies that the expected running time is infinite.
�
Theorem 4. The expected running time of GSEMOp with p ∈ [0, 1] being a
constant on SPG is O(n3).

Proof. The population P contains at most two solutions, because the second
objective of SPG has only two values 0 and 1. We first analyze the expected
running time until the Pareto optimal solution 0n is found. Let x denote the
solution with the second objective value 1 in P . Such a solution will exist in P
after at most n expected running time. This is because a solution from SP can
generate an offspring solution not from SP by flipping the first 1-bit, which hap-
pens with probability at least 1

n by either one-bit or two-bit mutation. Assume
that the number of 0-bits of x is j (j ≥ 1). It is easy to see that j cannot decrease,
and it can increase by flipping one 1-bit (but not the last) using one-bit muta-
tion. Because the probability of selecting x for mutation is at least 1

2 and one-bit
mutation is used with probability p, the probability of increasing j by 1 in one

842 C. Qian et al.

iteration is at least 1
2 ·p · n−j−1

n for j ≤ n−2 and 1
2 ·p · 1

n for j = n−1. Thus, the
expected running time to find 0n is at most

∑n−2
j=1

2n
p(n−j−1) + 2n

p ∈ O(n log n).
When finding 0n, we pessimistically assume that the solution from SP has

not been found. Starting from 0n, the solution 120n−2 can be found by flipping
the first two 0-bits using two-bit mutation. This happens with probability (1−p)·

2
n(n−1) , and thus the expected running time is n(n−1)

2(1−p) ∈ O(n2). Once a solution
from SP with i mod 3 �= 1 has been found, using one-bit and two-bit mutation
alternatively can follow the path SP to find the Pareto optimal solution 1n. If
i mod 3 = 2, flipping its first 0-bit by one-bit mutation can generate a better
solution. This happens with probability 1

2 · p · 1
n . If i mod 3 = 0, flipping its first

two 0-bits by two-bit mutation can generate a better solution. This happens with
probability 1

2 · (1 − p) · 2
n(n−1) . Since n

3 such two improvements are sufficient to

find 1n, the expected running time is at most n
3 · (2n

p + n(n−1)
(1−p)) ∈ O(n3). Thus,

the theorem holds.
�

5 Mixing Acceptance Strategies

In this section, we use two acceptance strategies as low-level heuristics:

– elitist acceptance: As lines 6–8 of Algorithm 1, only non-dominated solutions
are kept in the population, and the existing solution in P with the same
objective vector as the newly generated solution will be replaced.

– strict elitist acceptance: It is the same as elitist acceptance, except that the
old solution with the same objective vector as the newly generated solution
will not be replaced. That is, line 6 of Algorithm1 changes to be “if �z ∈ P
such that z � x′”.

The difference between these two strategies is to accept or reject the solution
with the same fitness. This has been theoretically shown to have a significant
effect on the performance of EAs in single-objective optimization [13]. Note that
GSEMO with elitist acceptance is just GSEMO. GSEMO with the strict strategy
is denoted by GSEMOstrict. In each iteration of GSEMO with the mixed strategy
(denoted by GSEMOmixed), elitist acceptance is used if the newly generated
solution x′ and the parent solution x have the same objective vector; otherwise,
strict elitist acceptance is used. Note that the mixed strategy employed here is
different from that of GSEMOp.

We then compare their running time on the PL function. As shown in
Definition 5, PL has a short path SP − {1n} with constant fitness. The Pareto
front is {(n, 1), (n + 2, 0)}, and the corresponding Pareto optimal solutions are
0n and 1n, respectively.

Definition 5 (PL) [8].

PL(x) =

⎧
⎪⎨

⎪⎩

(|x|0, 1) x /∈ SP = {1i0n−i | 1 ≤ i ≤ n}
(n + 1, 0) x ∈ {1i0n−i | 1 ≤ i < n}
(n + 2, 0) x = 1n.

Selection Hyper-heuristics Can Provably Be Helpful 843

Theorem 5 shows that GSEMO with a pure strategy on PL needs expo-
nential running time. The result of GSEMO was proved in [8], and its ineffi-
ciency is because a solution not from SP can generate a new solution from SP ,
which stops the ongoing random walk on SP . The inefficiency of GSEMOstrict is
because the first found solution from SP is far from the Pareto optimal solution
1n, and strict elitist acceptance does not allow the random walk on SP . We
then prove in Theorem 6 that GSEMO with the mixed strategy can solve PL in
polynomial running time. It works by allowing accepting the solution with the
same fitness only in the random walk procedure.

Theorem 5. On PL, the running time of GSEMO is 2Ω(n1/24) with probability
1− e−Ω(n1/24) [8], and that of GSEMOstrict is nΩ(n

5) with probability 1−2−Ω(n).

Proof. The initial solution is not in SP with probability 1 − n
2n due to uniform

selection, and it has at most 2n
3 1-bits with probability 1 − e−Ω(n) by Chernoff

bounds. The population P contains at most two solutions, since the second
objective of PL has only two different values. Note that the number of 1-bits
of the solution not from SP will never increase, since the first objective is to
maximize the number of 0-bits. Because the probability of flipping at least n

12
bits simultaneously in one step is less than n− n

12 , the first found solution from
SP has at most 3n

4 1-bits with probability at least 1−n− n
12 . Once a solution from

SP − {1n} has been found, it will never change because SP − {1n} is a plateau
and GSEMOstrict will not replace the solution with the same fitness. Thus, P
will always contain two solutions, a solution x from SP − {1n} with |x|1 ≤ 3n

4
and a solution y not from SP with |y|1 ≤ 2n

3 . The probabilities of mutating
x and y to 1n in one step are at most n−n

4 and n−n
3 , respectively. Thus, after

n
n
5 steps, the Pareto optimal solution 1n is generated with probability at most

n
n
5 ·n− n

4 = n− n
20 by the union bound. By combining all the above probabilities,

we get that the running time is nΩ(n
5) with probability 1 − 2−Ω(n).
�

Theorem 6. The expected running time of GSEMOmixed on PL is O(n3).

Proof. Since the function PL outside SP has the same structure as OneMax,
the expected steps to find 0n is O(n log n) by using the analysis result of the
(1+1)-EA on OneMax [7]. Then, it needs O(n) expected steps to find a solution
from SP , as it suffices to flip the leftmost 0-bit of 0n. For GSEMOmixed, if an
offspring solution from SP is generated by mutation on the solution not from
SP , it will not replace the solution from SP in the current population; but if
it is generated by mutation on the current solution from SP , the replacement
will be implemented. Thus, the algorithm will perform the random walk on the
plateau SP and the solution not from SP will not influence it. Note that the
solution from SP is selected for mutation with probability 1

2 . Using the analysis
result of the (1+1)-EA on SPC (i.e., Theorem 7) in [13], we get that the random
walk needs O(n3) expected running time to find 1n.
�

Note that the mixed strategy employed by GSEMOmixed here is different
from that by GSEMOp for mixing selection mechanisms or mutation operators.

844 C. Qian et al.

Fig. 1. Estimated ERT of GSEMOmixed and GSEMOp for solving the PL problem,
where a base 10 logarithmic scale is used for the y-axis.

GSEMOp uses the first low-level heuristic with probability p ∈ [0, 1] in each
iteration and uses the second one otherwise. To investigate the influence of dif-
ferent mixed strategies, we conduct experiments to compare GSEMOmixed with
GSEMOp for mixing elitist and strict elitist acceptance. The parameter p is set
as 1

n , 0.5 and 1− 1
n , respectively. For each comparison algorithm on each problem

size n ∈ {5, 10, . . . , 50}, we run the algorithm 100 times independently, where
each run stops when the Pareto front of the PL problem is found. The average
number of fitness evaluations is used as the estimation of the expected running
time (ERT). The result is plotted in Fig. 1. Note that the ERT of GSEMOp for
n ≥ 20 is too large to estimate. We can observe that GSEMOmixed is much more
efficient than GSEMOp. The curves of GSEMOmixed and GSEMOp grow in a
closely logarithmic and linear trend, respectively, which implies that their ERT
is approximately polynomial and exponential, respectively. Thus, these empirical
results suggest that choosing a proper threshold selection method is important.

6 Conclusion

This paper presents a theoretical study on the effectiveness of selection hyper-
heuristics for multi-objective optimization. Rigorous running time analysis
showed that applying selection hyper-heuristics to any of the three major com-
ponents of a MOEA, i.e., selection, mutation and acceptance, can exponentially
speed up the optimization. From the analysis, we find that selection hyper-
heuristics work by allowing the strengths of one heuristic to compensate for
the weaknesses of another. Our result provides theoretical support for multi-
objective selection hyper-heuristics. The empirical comparison on different mixed
strategies also implies the importance of choosing a proper heuristic selection
method.

Selection Hyper-heuristics Can Provably Be Helpful 845

References

1. Alanazi, F., Lehre, P.K.: Runtime analysis of selection hyper-heuristics with clas-
sical learning mechanisms. In: Proceedings of CEC 2014, pp. 2515–2523, Beijing,
China (2014)

2. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, Singapore (2011)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu,
R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12),
1695–1724 (2013)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.:
A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.-Y.
(eds.) Handbook of Metaheuristics. International Series in Operations Research &
Management Science, pp. 449–468. Springer, Heidelberg (2010)

5. Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic
approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K.,
Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. Opera-
tions Research/Computer Science Interfaces Series, vol. 32, pp. 129–158. Springer,
Heidelberg (2005)

6. Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest
functions for somatic contiguous hypermutations and standard bit mutations. In:
Proceedings of GECCO 2015, pp. 1399–1406, Madrid, Spain (2015)

7. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1–2), 51–81 (2002)

8. Friedrich, T., Hebbinghaus, N., Neumann, F.: Plateaus can be harder in multi-
objective optimization. Theoret. Comput. Sci. 411(6), 854–864 (2010)

9. Friedrich, T., Horoba, C., Neumann, F.: Illustration of fairness in evolutionary
multi-objective optimization. Theoret. Comput. Sci. 412(17), 1546–1556 (2011)

10. Guizzo, G., Fritsche, G.M., Vergilio, S.R., Pozo, A.T.R.: A hyper-heuristic for the
multi-objective integration and test order problem. In: Proceedings of GECCO
2015, pp. 1343–1350, Madrid, Spain (2015)

11. He, J., He, F., Dong, H.: Pure strategy or mixed strategy? In: Hao, J.-K.,
Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 218–229. Springer,
Heidelberg (2012)

12. He, J., Hou, W., Dong, H., He, F.: Mixed strategy may outperform pure strategy:
an initial study. In: Proceedings of CEC 2013, pp. 562–569, Cancun, Mexico (2013)

13. Jansen, T., Wegener, I.: Evolutionary algorithms-how to cope with plateaus of
constant fitness and when to reject strings of the same fitness. IEEE Trans. Evol.
Comput. 5(6), 589–599 (2001)

14. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective
evolutionary algorithms on pseudo-Boolean functions. IEEE Trans. Evol. Comput.
8(2), 170–182 (2004)

15. Lehre, P.K., Özcan, E.: A runtime analysis of simple hyper-heuristics: to mix or not
to mix operators. In: Proceedings of FOGA 2013, pp. 97–104, Adelaide, Australia
(2013)

16. Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on
choice function. Expert Syst. Appl. 41(9), 4475–4493 (2014)

17. McClymont, K., Keedwell, E.C.: Markov chain hyper-heuristic (MCHH): an online
selective hyper-heuristic for multi-objective continuous problems. In: Proceedings
of GECCO 2011, pp. 2003–2010, Dublin, Ireland (2011)

846 C. Qian et al.

18. Miranda, G., De Armas, J., Segura, C., León, C.: Hyperheuristic codification for
the multi-objective 2D guillotine strip packing problem. In: Proceedings of CEC
2010, pp. 1–8, Barcelona, Spain (2010)

19. Mitavskiy, B., He, J.: A polynomial time approximation scheme for a single machine
scheduling problem using a hybrid evolutionary algorithm. In: Proceedings of CEC
2012, pp. 1–8, Brisbane, Australia (2012)

20. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization:
Algorithms and Their Computational Complexity. Springer, Berlin (2010)

21. Qian, C., Yu, Y., Zhou, Z.H.: An analysis on recombination in multi-objective
evolutionary optimization. Artif. Intell. 204, 99–119 (2013)

	Selection Hyper-heuristics Can Provably Be Helpful in Evolutionary Multi-objective Optimization
	1 Introduction
	2 Preliminaries
	3 Mixing Selection Mechanisms
	4 Mixing Mutation Operators
	5 Mixing Acceptance Strategies
	6 Conclusion
	References

