
Searching for Quality Diversity When Diversity
is Unaligned with Quality

Justin K. Pugh(B), L.B. Soros, and Kenneth O. Stanley

Department of Computer Science, University of Central Florida,
4328 Scorpius Street, Orlando, FL 32816-2362, USA

{jpugh,lsoros,kstanley}@cs.ucf.edu

Abstract. Inspired by natural evolution’s affinity for discovering a wide
variety of successful organisms, a new evolutionary search paradigm
has emerged wherein the goal is not to find the single best solution
but rather to collect a diversity of unique phenotypes where each vari-
ant is as good as it can be. These quality diversity (QD) algorithms
therefore must explore multiple promising niches simultaneously. A QD
algorithm’s diversity component, formalized by specifying a behavior
characterization (BC), not only generates diversity but also promotes
quality by helping to overcome deception in the fitness landscape. How-
ever, some BCs (particularly those that are unaligned with the notion of
quality) do not adequately mitigate deception, rendering QD algorithms
unable to discover the best-performing solutions on difficult problems.
This paper introduces a solution that enables QD algorithms to pursue
arbitrary notions of diversity without compromising their ability to solve
hard problems: driving search with multiple BCs simultaneously.
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1 Introduction

Evolutionary computation (EC) has developed increasingly sophisticated search
algorithms around the idea that increasing fitness is a powerful mechanism for
optimization [2]. However, natural evolution is more than an optimizer. Unlike
conventional optimization, nature has no single unifying target and often rewards
being different in addition to being better. Indeed, natural evolution has discov-
ered a vast diversity of organisms and ways of being, simultaneously solving an
uncountable and ever-changing array of problems from sight to ambulation to
cognition, not by finding a single “best” solution to each but instead by collecting
a breadth of viable alternatives.

In a step away from EC’s longstanding fixation on fitness for the purpose
of optimization, a new algorithm called novelty search (NS) [8] was introduced,
which searches only for diversity and is notably free from objective pressure.
Ironically, novelty search and its variants [4,13] were initially heralded themselves
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as powerful tools for optimization because their agnosticism to the objective
sometimes allows them to bypass the problem of deception and thus succeed on
tasks where traditional objective-based approaches fail. However, NS’s ability to
collect a wide breadth of phenotypes is largely unappreciated when applied as
an optimization algorithm: any accumulated diversity in such an application is
eventually discarded in favor of saving only the best-performing individual.

Taking NS in a different direction, a unique search paradigm has begun to
emerge within EC wherein diversity itself is a desirable end product. New algo-
rithms such as Novelty Search with Local Competition (NSLC) [9] and MAP-
Elites [12] stand apart from the usual focus on optimization in that rather than
simply trying to find the single best individual (or tradeoffs among a set of objec-
tive targets [3]), these algorithms are instead designed to find quality diversity –
a maximally diverse collection of individuals in which each member is as high-
performing as possible. For example, one classic application of QD is to collect
as many successful ambulating virtual creature morphologies as possible [9,18].
QD is distinct from other approaches designed to return multiple results (such
as those that seek to return a handful of local optima) in that all parts of the
diversity space are considered equally important and the goal is to sample the
entire space, returning the best possible performance in each region (even lower-
performing regions). Compared to simple optimization, QD represents a new
style of search that more closely embodies the spirit of natural evolution and
for which evolutionary treatments are uniquely well-suited due to their natural
inclination for exploring many promising directions at the same time.

Applying QD algorithms such as NSLC or MAP-Elites requires both a notion
of quality (a fitness function) and a notion of diversity, called the behavior char-
acterization (BC), which defines the degree of difference between two individu-
als. So far, applications of QD have largely featured characterizations that are
unaligned with quality, which means that where an individual is located in the
diversity space has little bearing on its potential performance; examples include
the time individual legs of a hexapod robot spend on the ground [1], the spe-
cific image class targeted by a generated image [14,15], and the size and shape
of ambulating stick-figure creatures [18]. We can see that this focus on charac-
terizations that are orthogonal to quality is natural by examining our intuitive
sense of QD in nature. Indeed, Earth has accumulated a diverse repertoire of
organisms with respect to intuitive characterizations such as size, appearance,
or locomotion strategy, but those characterizations themselves are not good pre-
dictors of a particular organism’s reproductive capacity or cognitive function
(intuitive measures of quality). In effect, the types of diversity that we consider
to be interesting or salient are often unaligned with our notions of quality.

This observation is interesting because a recent study comparing state-of-
the-art QD algorithms in a relatively easy maze domain called the “QD-Maze”
(inspired by the “HardMaze” domain [8] that has become ubiquitous in studies
involving NS) indicates that the degree of characterization-quality alignment has
a significant impact on performance and furthermore suggests that unaligned
characterizations may be sub-optimal for driving search [16]. If this hypothesis
is true, then typical approaches to QD may break down on harder problems.
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The goal of this paper is to specifically address the challenge of finding
“unaligned QD” in the context of a difficult maze domain (such that finding
solutions is non-trivial even for the most sophisticated approaches). Experimen-
tal evidence in this domain confirms that driving search with an unaligned BC
indeed has catastrophic effects on the ability of QD algorithms to successfully
collect QD. As a solution, this paper introduces the idea of driving search with
multiple BCs simultaneously. The success of this new approach offers a promising
strategy for applying QD algorithms even when there is an incongruity between
the desired notion of diversity and the ideal characterization for driving search,
thus opening the door to a wider breadth of potential domains in the future.

2 Domain: QD-Gauntlet

Because the QD-Maze domain of Pugh et al. [16] is relatively easy, its results
in effect speak to search spaces with a variety of relatively simple solutions. Yet
many spaces of interest in the future will likely require a significant degree of
complexity to find the interesting needles in the haystack. Earth itself has this
quality, where there are innumerable different species, yet each is highly complex
in its own right. Thus the new QD-Gauntlet domain in this paper builds on
the old QD-Maze by greatly increasing the complexity of the possible paths to
solutions, but still providing the opportunity for variety among those paths. In
particular, like the QD-Maze [16], the QD-Gauntlet is a maze domain featuring
an egocentric robot with multiple viable paths to the goal. An egocentric maze
is an appealing platform for studying QD algorithms because the results are
easily visualized and egocentric mazes are well-studied in the context of novelty
search, where results originally obtained on HardMaze [8] have been shown to
generalize to a variety of other domains such as quadruped locomotion [11],
game content generation [10], swarm robotics [4], and image classification [19].
Furthermore, while the Euclidean distance to the goal heuristic that traditionally
drives search in maze domains is known to be deceptive (which is the primary
source of difficulty), in this domain we can also compute the perfect solution
paths, enabling concrete measurements of the progress towards solving the maze.

The new maze, QD-Gauntlet (Fig. 1), is significantly more complex than its
predecessors. In QD-Gauntlet, there are four distinct corridors leading horizon-
tally to a goal point on the right side of the maze. Each corridor (i.e. leg) of the
maze is composed of four successive segments, where each segment is designed to
be approximately equivalent to the size and complexity of the canonical Hard-
Maze [8]. To ensure that the four legs are similarly difficult, the legs are near
mirror images of each other with slight variations. Importantly, QD-Gauntlet
contains several long, straight corridors that terminate in a dead-end close to
the goal. These dead-end corridors serve to increase maze difficulty by deceiving
quality-seeking (i.e. fitness-based) search mechanisms. To further increase maze
difficulty, agents are given strict time constraints such that deviating too far
from one of the optimal paths will cause the agent to run out of time before
reaching the goal.
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Fig. 1. QD-Gauntlet. An egocentric agent begins on the start point (left) and is
presented with four viable paths to reach the goal point (right). The maze is riddled
with dead-ends that serve to deceive objective-oriented search algorithms.

As in Lehman and Stanley [8], agents are driven by evolved neural networks
and are equipped with a set of six wall-sensing rangefinders (five spanning the
frontal 180 degrees and one facing the rear), four pie-slice sensors to sense the
distance and relative direction of the goal point, and a single output to specify
left-right turns. The challenge then is not to evolve a path, but rather to evolve
a neural network that can correctly guide the agent through one of the long and
deceptive corridors based on its sensory inputs. Furthermore, the hope is that
QD algorithms can find multiple such solutions in the same run, corresponding
to a variety of different driving strategies. Doing so would be a proxy for finding
QD in any domain whose solutions are challenging and deceptive to reach.

3 Algorithms

This section describes the algorithms considered in this study, focusing first on
variants of novelty search from the literature. Then, two additional algorithms
are introduced to address the problem of finding QD when the desired notion
of diversity is not aligned with quality. The hope is that the results from this
study will also provide guidance for other QD algorithms in the future, such as
MAP-Elites [1,12].

Fitness. Included as a baseline to establish domain difficulty, a purely fitness-
based search is implemented as standard generational NEAT [17] with a
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population size of 500, where fitness is the deceptive Euclidean distance to the
goal heuristic (which also drives the quality portion of the QD algorithms that
follow).

With the exception of Fitness, all of the other algorithms in this paper are
implemented as steady state (only a small portion of the population is replaced
at a time to avoid radical shifts in what is considered “novel” from one tick to
the next: genomes are replaced in batches of 32 to allow moderate parallelism).

NS. While not technically a “quality diversity” algorithm because there is no
quality component, the novelty search (NS) [8] algorithm forms the foundation
of a number of other algorithms in this study and serves as another baseline for
comparison, establishing what is possible without a drive towards quality. Nov-
elty search works by rewarding novelty instead of fitness, where novelty measures
how different an individual’s behavior is from those that have been seen before.
More formally, novelty is calculated by summing the distance to the k-nearest
behaviors (in this paper, k = 20) from a set composed of the current population
and an archive of past behaviors. The distance between two behaviors is simply
the Euclidean distance between those behaviors when represented as a vector of
numbers (called a behavior characterization). While there exist several different
strategies for managing the archive [5], preliminary experiments indicated that
a powerful strategy is to add all individuals to an archive with a maximum size
that is enforced by deleting those with the lowest novelty (novelty is recomputed
against the archive before each deletion). In all cases, NS is run with a population
size of 500 and a maximum archive size of 2,500.

NSLC. Novelty search with local competition (NSLC) [9] combines the diversify-
ing pressure of NS with a localized drive towards quality called local competition
(LC), calculated as the proportion of 20 nearest behavioral neighbors with a
lower fitness score. LC encourages increasing performance within local behav-
ioral neighborhoods without suffering the deleterious effects of a global objective
pressure. Novelty and LC are combined by Pareto ranking as in the NSGA-II
multi-objective optimization algorithm [3].

3.1 Multi-BC QD Algorithms

In each of NS and NSLC, search is driven by some notion of behavioral diversity
(i.e. a BC). Traditionally, the BC that drives search corresponds to the type
of diversity that the researcher is interested in collecting (e.g. different types of
robot morphologies or different walking gaits) and thus is typically unaligned
with the notion of quality. Unaligned BCs are less capable of overcoming decep-
tion [7,16] and on difficult tasks (such as QD-Gauntlet) may altogether fail to
obtain high-performing solutions, creating a problem for researchers interested
in finding unaligned QD. As a solution, we introduce the idea here of driving
search with multiple BCs simultaneously and propose two possible methods for
doing so. While each method can conceivably support three or more BCs, for
simplicity the experiments that follow are restricted to only two BCs.
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NS-NS. The basic NS algorithm can be extended to support multiple BCs
simultaneously by combining their respective novelty scores in a multi-objective
formulation (with NSGA-II [3]). In this algorithm, dubbed NS-NS, each BC
maintains its own independent archive and individuals are evaluated against
each archive in turn to calculate one novelty score per BC. There is only a single
breeding population where the breeding potential for each member is decided
by Pareto ranking according to novelty scores. The key idea is that in a two-BC
formulation, one BC may be ideal for driving search while the other corresponds
to the type of diversity the user is interested in collecting.

NS-NSLC. While NS-NS facilitates searching with multiple concepts of diver-
sity, it lacks the explicit drive towards quality that is essential to QD algorithms.
This omission is remedied in NS-NSLC by adding a local competition objective
(in the same way as in NSLC) where behavioral neighbors are decided by the
(unaligned) BC that corresponds to the user’s desired notion of diversity.

4 Experiment

As discussed in Sect. 3, a common component of all QD algorithms is the BC,
which formalizes the notion of diversity so that it can drive the search explicitly.
In domains where there is really only one desired objective behavior, the BC
serves only to drive search towards better solutions and thus a strongly-aligned
BC is most appropriate (e.g. NS quickly solves the difficult HardMaze domain [8]
because it circumvents the problem of deception by pursuing novel endpoints).
However, when diversity itself is a desirable product of search, researchers must
choose a BC that expresses the type of diversity they want to collect; often
this choice results in a BC that is not well-aligned with the notion of quality,
which recent research suggests may not be optimal for driving search towards
better solutions [7,16]. To investigate how the performance gap between aligned
and unaligned BCs extends to hard problems, this paper compares the strongly-
aligned EndpointBC from Lehman and Stanley [8] and the unaligned Direc-
tionBC from Pugh et al. [16] on the much more challenging QD-Gauntlet (Fig. 1).
However, congruent with the common practice of searching for unaligned QD,
in this paper QD is always collected with respect to DirectionBC.

EndpointBC simply characterizes agent behavior by its (x, y) location at the
end of its trial. This strongly-aligned BC is a powerful way to drive search on
maze domains because it explores progressively more remote locations until the
goal point is found. On the other end of the alignment spectrum, DirectionBC
characterizes how the agent drives instead of where. DirectionBC consists of five
values indicating whether the agent was most frequently facing north (0.125),
east (0.375), south (0.625), or west (0.875) during each fifth of its trial. When
driving search with this unaligned BC, it is possible to exhaust the entire behav-
ior space without ever discovering high-performing solutions.

Each of the algorithms from Sect. 3 is implemented with each of Direc-
tionBC and EndpointBC for a total of seven treatments: Fitness, NSd, NSe,
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NSLCd, NSLCe, NSeNSd, and NSeNSLCd. Each treatment is run 20 times on
QD-Gauntlet, each for 1,000,000 evaluations (by which time all treatments reach
a performance plateau). Networks are evolved with a modified version of Sharp-
NEAT 1.0 [6] with mutation parameters validated by Pugh et al. [16]: 60 %
mutate connection, 10 % add connection, 0.5 % add neuron. Networks are feed-
forward and restricted to asexual reproduction; other settings follow SharpNEAT
1.0 defaults.

The performance of each treatment is evaluated according to the QD-score
metric introduced by Pugh et al. [16] (and similar to the “global reliability”
metric in Mouret and Clune [12]). Over the course of a run, a collection of indi-
viduals called the “QD grid” is gathered: the QD grid is managed such that each
behavioral bin remembers the highest quality individual seen so far. While these
bins are reminiscent of the bins in a MAP-Elites grid, the QD grid is completely
external to the breeding population and thus does not interfere with or influence
evolution. The QD-score is calculated as the total quality across all filled bins
within the QD grid and reflects both how many distinct behaviors have been dis-
covered and how good those behaviors are. Regardless of the BC driving search,
QD-score for this study is always calculated with respect to DirectionBC (i.e.
the QD grid represents a collection of different ways of driving). Consequently,
the EndpointBC-driven treatments in effect test whether QD with respect to one
BC can be achieved passively by driving search with another BC altogether.

While fitness for algorithms in this paper is the Euclidean distance to the
goal, this heuristic is deceptive and does not accurately characterize how close
collected behaviors are to actually solving the maze. Thus, for the purposes of
evaluation, quality for individuals within the QD grid is instead represented by
a progress score that respects that agents cannot drive through walls. Progress is
defined as inversely proportional to the length of the shortest valid path between
the agent’s final location and the goal point of the maze. Importantly, this mea-
sure of quality (which draws a perfect, non-deceptive gradient over the drivable
area of the maze) is not available to drive search and is only used for assessment.

5 Results

Figure 2 depicts the final QD-score (averaged over 20 runs) for each treatment
after 1,000,000 evaluations. Unsurprisingly, Fitness performs significantly worse1

than all other treatments (p < 0.001), underscoring the importance of special-
ized approaches to QD from outside the realm of conventional optimization.
Notably, treatments driven by DirectionBC perform significantly worse than the
EndpointBC and multi-BC treatments (p < 0.001), even though EndpointBC
has nothing to do with the type of diversity being collected. Explaining this
disparity, DirectionBC treatments fail to find even a single solution across all 40
runs, while each of the EndpointBC and multi-BC treatments consistently find
multiple maze solutions per run – thus DirectionBC’s low performance represents
an inability to overcome deception in the QD-Gauntlet.
1 Statistical significance is determined by an unpaired two-tailed Student’s t-test.



Searching for Quality Diversity When Diversity is Unaligned with Quality 887

Fig. 2. Final QD-score. The final QD-score achieved by each treatment is shown
(averaged over 20 runs). Error bars represent standard error. Bars are color-coded
according to which BC drives search: DirectionBC-driven treatments (subscript d) are
drawn in green, EndpointBC-driven (subscript e) in red, and multi-BC in blue. (Color
figure online)

Among the best surveyed approaches, NSeNSLCd and NSLCe are not signif-
icantly different after the full 1,000,000 evaluations (p = 0.163). However, End-
pointBC and multi-BC approaches demonstrate fundamentally different trends
of QD-score over time (not shown): while multi-BC increases rapidly to an early
plateau, EndpointBC takes much longer to reach similarly high scores. Corre-
spondingly, NS eNSLCd scores significantly better than NSLCe (p < 0.05) until
224,000 evaluations, after which point NSLCe catches up.

6 Discussion and Conclusion

The QD-Gauntlet task, like the HardMaze [8] before it, contains a pronounced
level of deception wherein the natural “Euclidean distance to the goal” fitness
function does not always point the way to the goal but rather often leads search
into an evolutionary dead end. In this task, as in any domain where deception is
sufficiently present, strictly following the compass of increasing fitness (as in the
Fitness treatment in this paper) is doomed to fail. While the idea of pursuing
behavioral diversity instead of objective fitness (as in novelty search) is often
recognized as a powerful way to confront such problems, it is clear that to be
effective behavioral diversity cannot be applied naively.

Such a naive application of behavioral diversity lies in DirectionBC. Because
it is unaligned with the concept of quality (driving closer to the goal), diver-
sity with respect to DirectionBC can be achieved without making any progress
towards conquering the problem of deception. Indeed, in the QD-Gauntlet, Direc-
tionBC alone is incapable of unlocking the best-performing parts of the search
space. Even if QD algorithms driven by such a BC succeed in generating a collec-
tion of locally optimal niches, if the best-performing behaviors cannot be found
then the system is only operating at a fraction of its potential.
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Experimental evidence on the QD-Gauntlet supports the idea that achieving
QD with respect to quality-unaligned BCs in the traditional way is problematic:
surprisingly, more QD is found with respect to DirectionBC by driving search
with a completely different BC (EndpointBC – which is known to excel at solv-
ing maze tasks) than when search is driven by DirectionBC itself (Fig. 2). This
result suggests that the ability of a BC to overcome deception can be just as
instrumental in the search for QD as actually searching for diversity.

To allow QD algorithms to effectively bypass the problem of deception with-
out sacrificing the desired notion of diversity, this paper introduces the idea of
multi-BC QD algorithms that drive search with more than one BC at the same
time: one that targets diversity and another that is better suited to driving
search. Of the multi-BC variants surveyed, the best performance is achieved by
NSeNSLCd, which is on par with NSLCe for achieving the highest QD-score on
the QD-Gauntlet (Fig. 2). Although EndpointBC alone in NSLCe succeeds in
collecting diversity with respect to DirectionBC in this study, it would be naive
to assume that collecting diversity with respect to one BC can always succeed at
covering diversity in arbitrary unrelated characterization spaces. Therefore, while
NSLC with an aligned BC emerges highly successful in this study, for researchers
aiming for long-term collection of unaligned QD, the multi-BC formulations offer
an attractive alternative that allows explicitly searching for both unaligned and
aligned diversity while potentially losing no significant performance.

While this paper has focused on QD variants of NS, in particular centered on
NSLC, an interesting future direction will be to validate the advantage of mul-
tiple BCs on other QD algorithms such as MAP-Elites. In MAP-Elites, multiple
BCs are possible because each BC can in principle control a separate grid, and
all the grids can be run at the same time. In this way, it is possible to apply
lessons from experiments here to a broad range of future QD algorithms.

Overall, this study reveals that the currently-accepted practice within QD of
exclusively driving search with the desired notion of diversity (BC) can break
down on hard problems and that an effective solution is to drive search with mul-
tiple BCs simultaneously. The insights gained here therefore expand the reach of
quality diversity to more difficult problems and to arbitrary notions of diversity,
bringing evolutionary computation one step closer to emulating the inventive
power of natural evolution.
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