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Abstract. Exploration of the search space through the optimisation
of phenotypic diversity is of increasing interest within the field of evolu-
tionary robotics. Novelty search and the more recent MAP-Elites are two
state of the art evolutionary algorithms which diversify low dimensional
phenotypic traits for divergent exploration. In this paper we introduce a
novel alternative for rapid divergent search of the feature space. Unlike
previous phenotypic search procedures, our proposed Spatial, Hierarchi-
cal, Illuminated Neuro-Evolution (SHINE) algorithm utilises a tree struc-
ture for the maintenance and selection of potential candidates. SHINE
penalises previous solutions in more crowded areas of the landscape. Our
experimental results show that SHINE significantly outperforms novelty
search and MAP-Elites in both performance and exploration. We con-
clude that the SHINE algorithm is a viable method for rapid divergent
search of low dimensional, phenotypic landscapes.

Keywords: Algorithm design · Phenotypic diversity · Neuroevolution ·
Evolutionary robotics

1 Introduction

Divergent evolutionary search methods are receiving increasing interest in the
evolutionary robotics community. Optimising phenotypic diversity within a pop-
ulation has been shown to avoid convergence towards local optima [5], to provide
diverse ranges of solutions in a given domain, [4,7,8] and to assist with the adapt-
ability of robot controllers [2]. Novelty search, introduced in [5] and the more
recent multi-dimensional archive of phenotypic elites (MAP-Elites) [10], are two
algorithms which utilise divergent phenotypic search. In this paper we introduce
the Spatial, Hierarchical, Illuminated Neuro-Evolution (SHINE) algorithm, a
novel method which the authors show explores low dimensional phenotypic land-
scapes more thoroughly and rapidly than the current state of the art. Similarly
to MAP-Elites, our proposed SHINE algorithm selects future populations from
an archive of previous solutions. However, the archive in the SHINE algorithm
is maintained within an hierarchical, spatially partitioned tree structure. Both
the weighting of offspring selection and the number of representatives assigned
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to the archive are calculated from the depth of the vertices within which the
solutions reside. Candidate solutions which exhibit phenotypic traits in more
crowded areas of the landscape are assigned to vertices deeper within the tree,
and are penalised accordingly. This allows the evolutionary trajectory to focus
on larger, shallower areas of the landscape, producing a divergent, and iteratively
more focused search procedure.

This paper is organised as follows. In Sect. 2 we give a brief overview of the
use of divergent phenotypic search within evolutionary robotics. In Sect. 3, we
introduce our proposed SHINE algorithm, highlighting the methods for archive
management, spatial partitioning and selection of offspring in a 2-dimensional,
quadtree implementation. An initial experimental domain, selected to assess the
ability of the SHINE algorithm to explore the phenotypic landscape, is presented
in Sect. 4. Our results, which are presented in Sect. 5, highlight that SHINE
significantly outperforms both novelty search and MAP-Elites. In Sect. 6 we
conclude that the hierarchical procedure adopted by the SHINE algorithm is a
promising method for rapid divergent phenotypic search.

2 Related Work

Novelty Search. Novelty search, as proposed by Lehman and Stanley [5], is an
algorithm which removes the need for a traditional objective function through
the assignment of high fitness values to novel behaviours in a population. The
objective fitness function is replaced by a behavioural distance metric, which is
used to determine the novelty of an individual in a population. High novelty is
assigned to individuals which exhibit features with a large distance to both the
rest of the population and an archive of previously encountered, highly novel
phenotypic traits.

Although novelty search has been shown to outperform objective fitness
search, especially in deceptive domains, it has been shown that the assessment of
behavioural novelty alone is insufficient as a generalisable evolutionary technique
in many tasks, especially in domains with large feature spaces [1,9].

MAP-Elites. More recently, the MAP-Elites algorithm, as introduced in [2,10]
is an evolutionary procedure that aims to find the highest performing solution at
each point in a low dimensional behaviour space. It is a hybridization of objective
driven and divergent search. In MAP-Elites, evolution proceeds through the
maintenance of an archive of previously high performing individuals, with each
individual being assigned to bin within a discrete, low dimensional representation
of the feature space. Offspring for subsequent generations are randomly selected
from the archive of high performing, yet phenotypically diverse individuals.

Due to the ability of MAP-Elites to highlight the highest performing solutions
in a phenotypic landscape, Mouret and Clune introduce the term illumination
algorithm to separate it from traditional optimisation algorithms [10].
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3 Spatial, Hierarchical, Illuminated Neuro-Evolution

SHINE is an illumination algorithm designed for rapid exploration of low-
dimensional feature spaces. SHINE promotes divergent search through penal-
ising solutions which are in more crowded areas of a predefined, low dimen-
sional phenotypic landscape. The algorithm utilises a spatially partitioned tree
for the maintenance of an archive of phenotypic representatives. The mechanisms
applied to both the storage and selection of the representatives are designed
specifically to weight subsequent generations towards more offspring in sparse
areas of the landscape.

The SHINE algorithm shares similarities to both novelty search and MAP-
Elites. As in MAP-Elites, SHINE maintains an archive of previous solutions
which are selected for inclusion by low-dimensional discrete phenotypic traits.
However, SHINE utilises an hierarchical, spatially partitioned tree structure for
archive maintenance. MAP-Elites stores a single elite within each area of the
feature space; the current best performing individual at an objective function.
SHINE maintains multiple individuals within each vertex of the archive tree
which are chosen by their distance to the boundaries of their particular pheno-
typic trait, in a manner more aligned with novelty search. Therefore, the SHINE
algorithm also differs from MAP-Elites in that it directly aims to optimise sparse
areas of the feature space. Here we introduce the main SHINE procedure, out-
lining a 2-dimensional implementation which utilises a quadtree structure [11].

3.1 The Algorithm

The main procedure of the SHINE algorithm, (Algorithm1) begins by initializing
a random population P with n random individuals (Lines 1–5). In each gener-
ation, every individual ρ is assessed in the domain and a phenotypic descriptor
is measured and assigned to μ (lines 7–9). The tree, T , is queried with the
descriptor μ (line 9). After all individuals in the current population have been
assessed and the tree structure updated, P is added to the archive (line 11).
A new archive is calculated and assigned to X (line 12). All individuals are
removed from the population, which is then repopulated with mutated offspring
from the updated archive X via weighted roulette selection (lines 14–18). This
procedure is repeated until a terminating condition is met, or alternatively after
a predefined number of generations (line 19).

Phenotypic Tree. In a similar manner to MAP-Elites, the SHINE algorithm
progresses through the maintenance of an archive of genomes which are selected
for inclusion by a measured phenotypic trait. However, SHINE maintains an
archive of potential genomes in an hierarchical, spatially partitioned tree.

The number of dimensions and the bounding volume of the phenotypic
descriptor are required to initialise the root vertex of the phenotypic tree. In
this paper, we focus upon the 2-dimensional implementation of the algorithm,
resulting in a quadtree structure [11]. We define a phenotypic descriptor as an
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Algorithm 1. Main SHINE procedure
Require: α: max tree depth, β: vertex division level, V: phenotypic tree
1: procedure SHINE
2: P ← ∅

3: while |P | < n do
4: P ← RandomIndividual()
5: end while
6: do
7: for ρ ∈ P do
8: μ ← PerformTrial(ρ)
9: QueryTree(μ, V)

10: end for
11: UpdateArchive(P , V)
12: X ← CurrentRepresentatives(V)
13: P ← ∅

14: while |P | < n do
15: x ← RouletteSelection(X )
16: x′ ← Mutate(x)
17: P ← P

⋃
x′

18: end while
19: while Terminate() is false
20: end procedure

ordered pair μ = (x, y). However, the algorithm may be extended to phenotypic
descriptors with higher numbers of dimensions. Let |μ| represent the number
of dimensions of a phenotypic descriptor and let c = 2|μ|. Each vertex will be
subdivided into c child vertices (each dimension being split into 2 equal regions).
Therefore, 3-dimensional traits (|μ| = 3) would require an octree (c = 23)
structure.

The SHINE algorithm requires 2 pre-defined constants to control the subdi-
vision of the tree. We define constant α to be the maximium depth of the tree
and β as the maximum number of points which may fall within a leaf vertex
before it is divided. These constants are used to determine both the underlying
phenotypic tree structure and the archive of representatives.

A series of trial runs in our experimental domain were performed with a range
of α and β values: α = (3, 4, 5, . . . , 12, 13, 14), β = (20, 40, 60, . . . , 120, 140, 160).
The values α = 7 and β = 80 produced the most reliable and optimal results
and are therefore used in our experimental setup. Testing in further domains
and with differing population sizes would be required to ascertain whether these
values are universally optimal.

The QueryTree(μ,V) method (line 9, Algorithm1) determines the devel-
opment of the tree structure. Figure 1 illustrates an example quadtree structure
with parameters α = 4 and β = 2. During each generation, all individuals are
assessed and the tree is queried with their phenotypic descriptor, μ. Let v repre-
sent the relevant vertex of V. Let the bounding area of v = [vx1 : vx2]×[vy1 : vy2],
where vx1 < μx ≤ vx2 ∧ vy1 < μy ≤ vy2. Let vd be the depth within the tree
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Fig. 1. An overview of spatial partitioning in the SHINE archive. (α = 4, β = 2).

and |v| be the number of descriptors currently assigned to v. If the capacity
of v has been exceeded and the maximum depth has not been reached, such
that |v| > β ∧ vd < α, then v is subdivided into 4 equal sized regions, i. e.,
top-left, top-right, bottom-left and bottom-right (TL, TR,BL,BR, Fig. 1). All
descriptors within v are then assigned to their relevant child vertices.

Archive Management. After the tree has been queried by the population, the
resulting structure is utilised to determine the distribution of the archive of rep-
resentatives from which subsequent populations are selected. Membership of the
archive is weighted dependant upon the depth of the representatives’ containing
vertex. Shallower vertices in the tree structure are assigned more representatives.
Representatives do not alter the structure of the tree, rather the relevant vertex
for a potential representative’s phenotypic descriptor determines whether it is
added to the archive. Let |μ| represent the dimensions of a phenotypic descriptor
and let c = 2|μ|. Equation (1) defines the maximum number of representatives
r(v) which may be assigned to a particular vertex.

r(v) = (vd − α + 1)c (1)

The number of representatives within a single vertex will therefore fall within
the range 1 ≤ r(v) ≤ (α + 1)c. Let Xv be the set of all representative within a
vertex, v. If the capacity of v is reached, such that |Xv| = r(v), representatives
from Xv are selected for addition or removal based upon a distance function d(x).
This distance function determines the distribution of representatives within a
single leaf vertex. In alignment with this, let x be a potential representative for
inclusion within the archive, where x /∈ Xv. Let w ∈ X be the weakest current
representative w = arg max

∀i∈Xv

d(i). The updated archive of representatives, which

we define as X ′
v, is determined as in Eq. (2).

X ′
v =

⎧
⎨

⎩

Xv

⋃
x if |Xv| < r(v)

Xv if |Xv| = r(v) and d(x) > d(w)
{Xv \ w}

⋃
x if |Xv| = r(v) and d(x) ≤ d(w)

(2)
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Fig. 2. An illustration of the
corner sorting method for
representative selection.

Dependant upon the particular type of search
required, various metrics may be proposed. For
example, defining d(x) as an objective function
would allow the archive to behave in a similar man-
ner to the MAP-Elites algorithm [10], selecting elite
representatives for inclusion within the phenotypic
tree. We also suggest that metrics based upon nov-
elty search [5] or hybrid novelty-objective measures
[12] may be of particular interest for further testing
of the algorithm in different domains.

In our experiment, presented in Sect. 4, we
utilise the corner distance metric, a function which
favours representatives in the outer corners of the
containing vertex, encouraging representatives to

focus on the areas closest to neighbouring vertices and increasing the chance
of mutated offspring to acquire phenotypic traits in neighbouring cells. Figure 2
illustrates our corner method for representative selection. Representatives are
sorted by distance from the outer corner of their assigned vertex’s position in the
quad tree structure (i.e. representatives in top-left vertices are sorted by their
distance from top left corner of the vertex). Once the number of representatives
exceeds the maximal threshold, as defined in Eq. (1), the representative with the
largest distance is removed.

Proportional Selection. SHINE utilises a traditional roulette wheel method
for the selection of offspring. Potential solutions are selected from the complete
set of current representatives within the tree X = {Xv1

⋃
, ...,

⋃
Xv|V|}. The fit-

ness f(x) of a representative x in vertex v is obtained by calculating the recipro-
cal of the sum of the vertices’ depth vd and its normalised population vp

β . Defined
as 1/(vd+

vp
β ) and simplified in Eq. (3).

f(x) =
β

βvd + vp
(3)

This fitness assignment results in a lower probability of selection of repre-
sentatives within smaller (deeper within the tree) and more crowded (higher
population) areas of the phenotypic landscape, allowing the search procedure to
concentrate on larger and sparser vertices within the tree.

4 Experimental Evaluation

Domain. The aim of our experiment is to assess the diversity and thorough-
ness of phenotypic exploration in an evolutionary trajectory optimised with the
SHINE algorithm in comparison to novelty search and MAP-Elites. Therefore,
we select a domain with a deceptive objective function and which requires a high
level of exploration to produce a successful solution.
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Fig. 3. The HARD maze
domain. Triangle indicates
agent start position, circle
indicates exit.

Our experimental domain is taken directly from
previous studies which have assessed novelty search
and variants of the algorithm [3,5,6]. The maze
used in our experiment, the HARD maze, is clas-
sified as a deceptive domain, particularly difficult
for objective algorithms to reliably find solutions
(Fig. 3). The maze is of the size 1000 × 1000 units,
the agent has a size of 20 units and successfully
reaching the exit requires the agent to be within
20 units. Each agent is given 4000 time steps to
complete the maze. Populations of 200 controllers
were optimised for 1000 generations. The agent con-
trollers are neural networks which are evolved using
the NEAT algorithm [13], with the speciation mech-

anism deactivated. As in [3,5,6], the objective fitness of a solution ρ is calculated
as f(ρ) = l−dist(ρ, e), where l is the diagonal length of the maze and e is the exit
to the maze. The phenotypic descriptor is calculated from the ending position
of the agent, μ = (ρx, ρy).

We assess 4 algorithms in our experiment — traditional objective based
search (OBJECTIVE), novelty search (NOVELTY), MAP-Elites (MAP-
ELITES), and our proposed SHINE algorithm (SHINE). The algorithms were
repeated in each domain 50 times with a different random seed in each trial.
In order to ensure consistency between algorithms, identical random seed values
were given to each of the algorithms in each trial. The performance of each algo-
rithm was determined by the number of generations taken to locate the exit in
the domain.

The simulation was performed using a bespoke domain written in the C++
programming language, developed to be similar to the original maze domain
experiments in [5,6]. The implementation of the NEAT algorithm used was devel-
oped as an extension to the MultiNEAT software in the C++ language1.

Domain Coverage. The cumulative coverage of the domain is calculated at
each generation in the trial over 1000 generations. The domain is divided into
a 2-dimensional matrix M , where |M | = n × n. In our presented results,
n = 30. The final position of an individual (ρx, ρy) is mapped to the correspond-
ing region of M . Let M ′ be the set of the regions of M which contain individuals:
M ′ = {x : x ∈ M ∧ |x| > 0}. Domain coverage is then calculated as |M ′|

|M | .

Exploration Uniformity. The spread of the population is measured through
the calculation of exploration uniformity in a similar manner to [3]. To ascertain
the speed at which exploration occurs for each algorithm, values are calculated
at each generation in the trial rather than cumulatively over the whole trial as in
[3]. Again, the population is mapped to the discrete matrix M . Let Pt be the set
of individuals in the population at generation t and let Ψt be the distribution of
Pt over M . The exploration uniformity of the population, D(Pt), is calculated as

1 c©2012 Peter Chervenski. http://multineat.com/index.html.

http://multineat.com/index.html
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Fig. 4. Performance results from HARD maze domain (SHINE, NOVELTY and MAP-
ELITES were successful in all trials.)

the similarity between Ψt and the uniform distribution U . As in [3] the distance
metric used is the Jensen-Shannon distance (JSD). The exploration uniformity
at generation t is thus defined as:

D(Pt) = 1 − JSD(Ψt, U), where :

Ψt =
(

|I1|
|Pt|

, ...,
|I|Pt||
|Pt|

)

, Ir = {i ∈ Pt : region(i) = r}

U =

⎛

⎜
⎜
⎜
⎝

n2 times
︷ ︸︸ ︷

1
|M | × · · · × 1

|M |

⎞

⎟
⎟
⎟
⎠

(4)

5 Results

Performance. As illustrated in Fig. 4a, all 3 algorithms located solutions to the
maze in all 50 trials, resulting in a probability of success of 1.0. Maximum prob-
ability of success is reached significantly faster (p < 0.001) by the SHINE algo-
rithm, after 182 generations, compared with 374 generations for MAP-ELITES
and 819 generations for NOVELTY. Both NOVELTY and MAP-ELITES fol-
low a similar gradient of ascent, however NOVELTY requires a higher number
of generations to locate a solution in 3 of the trials.

Figure 4b shows the number of generations taken to find a successful solution.
The SHINE algorithm requires a significantly fewer number of generations, with
a median value of 71. MAP-ELITES and Novelty achieve similar results, with
median values of 146 and 141 generations respectively.

Diversity. Figure 5a shows the exploration uniformity for each of the algorithms
over 1000 generations. The maximum mean level of exploration uniformity is
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Fig. 5. Diversity of the algorithms within the HARD domain. (Shaded area indicates
25th to 75th percentiles.)

achieved by the SHINE algorithm, 0.51912 after 772 generations. However, it
achieves comparably high levels after 232 generations, remaining relatively stable
throughout the evolution. Both MAP-ELITES and NOVELTY fail to achieve
this maximal level within 1000 generations, however the exploration uniformity
is still increasing for both algorithms at the end of the trial. The maximum mean
level achieved by MAP-ELITES is 0.50584 after 984 generations. NOVELTY
achieves a maximal value of 0.51408 after 988 generations. Therefore an evo-
lutionary run with a higher number of generations may allow MAP-ELITES
and NOVELTY to achieve a level of exploration uniformity similar to SHINE.
Figure 5b shows the proportion of the domain covered by the population. All
three algorithms produce similar levels of domain coverage for the initial 400 gen-
erations. However, beyond this SHINE covers significantly more of the domain
than both NOVELTY and MAP-ELITES.

6 Conclusion

In this paper we have introduced a novel method for rapid exploration of low
dimensional feature spaces. Our experimental evaluation in a deceptive simu-
lated maze domain shows that the SHINE algorithm outperforms both novelty
search and MAP-Elites, two state of the art algorithms for divergent pheno-
typic search. We have shown that the hierarchical tree structure and approach
taken for archive maintenance and offspring selection in the SHINE algorithm
are viable methods for rapid phenotypic exploration.

Further experimental validation is required in order to establish the perfor-
mance of the SHINE algorithm in domains with a less direct mapping between
the feature space and the objective landscape. The authors suggest that a
replacement of the corner method presented in this paper to an objective func-
tion would allow SHINE to be compared more directly with MAP-Elites in objec-
tive focussed domains. The authors are aware of the limitations in testing within
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a simulated environment. MAP-Elites has been shown to be extendible to the real
world application of robot controllers [2]. Therefore we suggest a future direction
to be the assessment of SHINE beyond simulation, in real world domains.
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