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Abstract. We evaluate the performance of estimating the number of
local optima by estimating their proportion in the search space using
simple random sampling (SRS). The performance of this method is com-
pared against that of the jackknife method. The methods are used to
estimate the number of optima in two landscapes of random instances of
some combinatorial optimisation problems. SRS provides a cheap, unbi-
ased and accurate estimate when the proportion is not exceedingly small.
We discuss choices of confidence interval in the case of extremely small
proportion. In such cases, the method more likely provides an upper
bound to the number of optima and can be combined with other meth-
ods to obtain a better lower bound. We suggest that SRS should be the
first choice for estimating the number of optima when no prior informa-
tion is available about the landscape under study.

1 Introduction

Local search algorithms are widely used to find solutions to many optimisation
problems either on their own or as a part of other metaheuristics. The neigh-
bourhood operator they employ defines a structure over the search space; the
properties of that structure can strongly influence their performance. One of
these properties is the number of local optima, which combined with the addi-
tional knowledge of other properties such as the quality of the optima and the
correlation between the basin size and fitness can give an indication of the struc-
ture difficulty. Nonetheless, knowing only the number of local optima can still
provide some guidance in informing the choice of the neighbourhood operator.
The knowledge of the number of local optima can also be used to study its growth
behaviour, as the dimensionality increases, or across different values of problem
parameters (e.g. phase transition control parameter). However, the number of
local optima in a given instance is not known in advance and counting them
is infeasible in most cases, apart from very small problem sizes. Therefore, the
need for obtaining a statistical estimate of the number of local optima arises.
Having an estimate of the total number of optima can also be helpful in com-
menting on the quality of the found local optima or the confidence that the
global has been seen [17]. In the last two decades, a number of approaches have
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been proposed for estimating the number of local optima in combinatorial opti-
misation problems (COPs) [4,6,8,9,15-17]. Most of these methods start from a
random sample of different configurations and apply local search to them until
a local optimum is reached. Some of the methods are non-parametric estimators
such as jackknife and bootstrap [6], while others assume some parametric dis-
tribution of the basin sizes (e.g. gamma distributions) [8,9]. However, each of
these methods has its particular limitations and none of them provide a good
estimate in all scenarios (e.g. when the basin sizes are different or when the
number of optima is small). For example, the jackknife method [6] requires the
sample size to increase as the number of optima increases, which is impractical
since the number of optima grows exponentially or sub-exponentially with the
problem size in most problems [13,15]. One drawback of the bootstrap method
is its computational demands to carry out the re-samplings [6]. The approach
proposed by [8] models the basin sizes using gamma distribution and requires
an estimate of the parameter value of the distribution, which may not be prac-
tical. Another possible limitation of all the methods that apply local search to
an initial random sample is the time needed to converge to a local optimum. In
many cases, this time is linear or superlinear in problem size [15,21], but it can
be exponential in other cases [5]. A review and an evaluation for several of these
methods and others from the statistical literature can be found in [12].

The problem of estimating the number of local optima in COPs can be con-
sidered as the classical problem of estimating a population proportion in statis-
tics. However, the use of this method to estimate the number of local optima is
seldom found in the literature. It has been used to estimate number of optima
in the multidimensional assignment problem [11], and in the quadratic assign-
ment problem [19,20]. [4] mentioned the attractiveness of the simplicity and
the unbiased estimate provided by this method, but they argued against it as
the required sample size can be very large when the proportion is exceedingly
small. They also criticised that in such a case, the method is more likely to pro-
vide an upper bound estimate rather than a lower bound one. [12] recommends
using it only when all or most of the sampled optima have been seen once, after
applying local search to an initial sample of points. This method is problem-
independent and we argue that it is the best for estimating the number of local
optima in terms of simplicity, accuracy and computational requirement when
their proportion is large. As mentioned before, the required sample size for an
accurate estimate increases as the proportion decreases, which makes obtaining
an accurate estimate very expensive. However, an upper bound on the number
of optima in such cases can still be obtained with reasonable sample sizes, giving
some useful information about the studied landscapes. In the rest of this paper,
we refer to estimating the number of local optima by estimating their propor-
tion as simple random sampling (SRS). To provide a baseline, we compare the
performance of SRS with the performance of the jackknife method. In Sect. 2,
we introduce some preliminaries. In Sect. 3, we describe SRS and jackknife, and
discuss different choices of confidence intervals for SRS. In Sect.4 we describe
the experimental settings and discuss the results.
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2 Preliminaries

Search Space: The search space X is the finite set of all the candidate solu-
tions. The fitness functions of all the studied problems in this paper are
pseudo-Boolean functions, hence the search space size is | X| = 2.

Neighbourhood: A neighbourhood is a mapping N : X — P(X), that asso-
ciates each solution with a set of candidate solutions, called neighbours,
which can be reached by applying the neighbourhood operator once. The
set of neighbours of x is called N(z), and x ¢ N(z). We consider two dif-
ferent neighbourhood operators: the Hamming 1 operator (H1) and the 142
Hamming operator (HI1+2). The neighbourhood of the HI operator is the set
of points that are reached by a 1-bit flip mutation of the current solution x,
hence the neighbourhood size is |N(z)| = n. The neighbourhood of the H1+2
operator includes the Hamming one neighbours in addition to the Hamming
two neighbours of the current solution x, which can be reached by a 2-bits flip
mutation. The neighbourhood size for this operator is |[N(z)| = (n? +n)/2.

Fitness Landscape: The fitness landscape of a combinatorial optimisation
problem is a triple (X, N, f), where f is the objective function f : X — R,
X is the search space and N is the neighbourhood operator function [18].

Local Optima: We define a local minimum z* € X as f(y) > f(z*) for all
y € N(z*). A local maximum is defined analogously. We use the term local
optimum to denote either a local maximum or a local minimum. We refer to
the actual number of optima in a given landscape as v.

Local Search: The local search strategy we use is the best improving move,
stopping when a local optimum is reached.

Basin of Attraction: The basin of attraction B(z*) for an optimum z* € X is
the set of points that leads to it after applying local search to them, B(xz*) =
{z € X | local-search(z) = z*}.

3 Estimation Methods

3.1 Simple Random Sampling

Suppose that a random sample of size s is taken from the search space, and
that Y optima has been observed in the sample (0 <Y < s), p is the unknown
proportion of the optima in the search space. Since the sample size is fixed, and
the sampled configurations are independent and have a constant probability of
being an optimum given by p, then Y has a Binomial distribution, B(s, p), with
s trials and p success probability. The unbiased point estimate of the population
proportion is given by p = Y/s and the estimated number of local optima can
then be directly calculated by multiplying p by the search space size S = | X]|.
There are several methods for computing confidence interval estimates for p; the
most referred ones are based on the approximation of the binomial distribution
by the normal distribution [14]. A rule of thumb, that is frequently mentioned,
is that the binomial distribution is suitable for approximation by the normal
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distribution as long as sp > 5 and s(1 — p) > 5 [2,22]. The most widely used
confidence interval for p is the standard Wald confidence interval (Cl) [2,14,22]:

p(1—p)

(1)

where 2,9 is the z-score for (1 — a)100 % confidence level and z,/2 M is

the error margin e. The error margin can be corrected for a finite population

of size S to be equal to e = z4/21/ @1 / g:; where the value ,/gjf is the

finite population correction (fpc) factor [22]. The value of fpc is approximately
one when S is large compared to s, and is obviously equal to zero when s = S.
The sample size for a desired confidence level and a desired margin of error can
be determined for an infinite population by:
2 A~ A
z 2p(]‘ - p)
S0 = 0‘/72 (2)

e

Cls = p+t Ra/2

If no prior information about p or no initial estimate of p is available, then p can
conservatively be set to 0.5 where the expression p(1 —p) is maximised. This will
ensure that the sample size is at its maximum for the desired e. However, the
proportion of optima is typically much smaller than that, thus it might be more
wise to set p to a smaller value and set e to a much smaller value. The sample
size can be corrected for a finite population by the following formula:

SQS
so+(S—1) 3)

From Eq. (2) we can see that the sample size does not depend on the popula-
tion size but only on the desired confidence level, the desired margin of error, and
the estimate of p. The behaviour of Wald interval is poor when p is close to 0 or
1,and when Y = 0 or Y = s, the length of the Wald interval is zero [1,2,14]. The
exact Clopper-Pearson interval (exact in the sense of using the binomial distribu-
tion rather than the approximation by the normal distribution) is an alternative
method to consider in such cases. However, and because of the inherent con-
servativeness of exact methods, other approximate methods are more useful [1].
The Agresti-Coull confidence interval (CIac) is recommended for correcting the
Wald interval. It recentres the Wald interval by adding the value zi /2 /2toY so

S1 =

it becomes Y = Y—i—zi/z/Q and adding the value 22/2 to s to become 5§ = s—l—zi/?
When the z-score for the 95% confidence level (27 /2 = 1.96) is approximated
to 2, the Agresti-Coull interval is equivalent to adding two successes and two
failures to the sample [1,2]. The corrected point estimate is p = }7/ 5 and the
confidence interval is given by:

Clac = 5 2072/ P02 (4)

Using Agresti-Coull confidence interval, the SRS estimation of the number
of local optima is given by:
8515 = pS (5)
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3.2 Jackknife

Jackknife is a non-parametric method based on the idea of re-sampling to reduce
the bias of the estimate. The use of jackknife to estimate the number of local
optima was first proposed by [6]. We selected the jackknife method as a com-
parison baseline for two reasons: jackknife has an attractive simple and fast
closed-form computation, and it is recommend to be used when the size of the
sample is adequate with respect to v [6,12]. Starting from s different randomly
sampled configurations and after applying local search to each one of them, the
jackknife estimate of the number of local optima is given by:

s—1
s

o =B+ B (6)
where (31 is the number of optima that have been seen once and 3 = Z;l 0;
is the number of distinct optima seen. Note that this is a special case of the
jackknife estimator where one point is left out of the original sample s at a time.
A generalised estimator that considers leaving out 1,...,5 points at a time can
be found in [3]. As pointed out by [17], the choice of the most suitable number of
points to leave out in order to achieve a better estimate is problem-dependent.

4 Experiments

We obtain statistical estimates of the number of optima in randomly generated
instances of the number partitioning problem and the 0-1 knapsack problem.
The aim of the experiments is twofold: compare the estimates of SRS with that
of jackknife, and examine the effect of the sample size on the accuracy of the SRS
estimate. We compare the performance of the two methods using two sample sizes
to allow for a fair comparison, since SRS uses at most s(|N(z)| 4+ 1) number of
fitness evaluations compared to s(|N(z)|+1)-+t|N(z)| fitness evaluations used by
jackknife, where ¢ is the total number of steps taken when descending(ascending)
from each initial configuration. We describe the settings of the two sample sizes
in more details in the results subsection.

4.1 Combinatorial Optimization Problems

Number Partitioning Problem (NPP). Given a set W = {wy,...,w,} of
m-bit positive integers (weights) drawn at random from the set {1,2,..., M}
with M = 2™, the goal is to partition W into two disjoint subsets S,.S’ such
that the discrepancy between them |} _qwi — 3", cg wi| is minimised. The
instances we study have weights drawn from a uniform distribution and m = n.
When the weights are drawn from a uniform distribution, the theoretical
average proportion of the local optima in the HI landscape is given by the
following formula that was obtained using statistical mechanics analysis [7]:

24 _
<p>NPP _ ?TL 3/2 (7)
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0-1 Knapsack Problem (0-1KP) is defined as follows: given a knapsack of
capacity C' and a set of n items each with associated weight w; and profit p;,
the aim is to find a subset of items that maximises f(z) = Y., z;p;, subject
to > wyw; < C,where x € {0,1}", C =AY, w;, and 0 < X\ < 1. Infeasible
solutions that violate the given constraint are penalised by subtracting this value
from the fitness function: Pen(z) = p (3°1, zyw; — C) + Y. p;, where p =
max;=1, . n{pi}/min;=1 ., {w;}. The weights of the instances studied in this
o

paper are drawn from a discretised normal distribution A/(27~1, T5)-

4.2 Results

The mean estimates of v in the two landscape of the 0-1KP is shown as n grows
in Fig. 1 (note that some data points lie on top of each other). The estimates were
obtained by the jackknife and SRS, and were averaged over 10 samples for each
sample size. The sample sizes are set as follows: first we obtained the sample size s
for each n from Egs. (2) and (3) by setting e = 0.005, p = 0.3 and z, /o = 2.576.
Note that the sample size, only changes slightly as n increases, starting from
s = 45,701 when n = 18, until it reaches s = 55,351 when n = 100. After
obtaining s, we then set the small sample size of SRS to s and the small sample
size of jackknife to s — ¢t +¢/(|N(z)| + 1) (i.e. we subtract the fitness evaluations
used when ascending from the sample budget). We set the large sample size of
jackknife to s and the large sample size of SRS to s+t —t/(|N(x)|+1), where ¢ is
the total number of steps taken by jackknife with the large sample. The samples
are drawn without replacement for n < 24. The figure shows that SRS using
both small and large sample sizes accurately estimates the real proportions in
both landscapes, apart from n = 100 in the HI1+2 landscape. The discrepancy
between estimates of the large and small samples in this case, in addition to
the larger standard deviations, indicate that the proportion is small and that
the sample size, in particular the small one is probably inadequate. As for the
jackknife, both sample sizes quickly become inadequate as the number of optima

+ Jackknife small o SRS small —%— Real
v Jackknife large o SRS large
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Fig. 1. SRS and Jackknife estimates of the optima number (in log scale) as the problem
size grows. Each data point represents the average estimate of 10 samples from a single
instance of 0-1KP. The error bars show the standard deviations.
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Fig. 2. Each figure shows the estimates of the number of optima in a single instance
of 0-1KP, and each data point shows the estimate of a single sample. The error bars
around SRS estimates are the 95 % Clac.
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Fig. 3. SRS estimates of the optima proportion versus s. The sample sizes are obtained
from Eqs. (2) and (3) by setting p = 0.3 and z,/2 = 2.576 (corresponding to 99 %
confidence level). The results are for a single instance of 0-1KP of size n = 30. The
error bars are the 95% Clac.

seen once quickly grows with n until all the optima that have been seen were
only seen once. Thus, the method fails to provide accurate estimates and grossly
underestimates v. This is more noticeable in the HI landscape where v is large.
The CIac of SRS estimates are very narrow in HI landscape across all n, but
they get wider as n increases in the HI1+2 landscape. In Fig. 2, we look closely
at the results of four instances of size n = 30,100 from Fig. 1. The figure shows
the confidence interval around 5 estimates of each method with each sample
size. The width of the Clac decreased with the large sample size as expected.
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Table 1. NPP sample sizes

n 24 | 30 | 100 1000
sle= @ PP 276 | 388 | 2,395 | 75915

e="" 1 6889 | 9,697 | 59,855 1,897,856

e =" 97,520 38,785 | 239,420 | 7,591,421

¥ Real
[JSRs
— Real mean Q

--~SRS mean %
| — Theoretical

n=1000

NPP
(c) e= (p)lo

Fig. 4. Optima proportion in the HI landscape of NPP for different vales of n. SRS
estimates are shown when the sample size is obtained with 3 different desired error
margins e (shown in Table1). The results are for 100 random instances for each n.
Obtaining the real proportion was only computationally feasible for n = 24,30. The
theoretical mean proportions are obtained from Eq. (7).
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The SRS large sample size for n = 30 is around 2 x 10° and around 3 x 10° for
n = 100. Obtaining the real number of optima was infeasible for n = 100 (note
that methods that exploit some knowledge of f can obtain v of larger n than that
feasible by exhaustive search of X [10]), therefore we show the estimate of SRS
with a larger sample size by setting Y to the sum of the number of optima found
in all the large samples and s to the sum of the large sample sizes. The outcome
919 of both instances are around 10~°. The very wide CIxc with negative lower
bounds around the small sample size estimates of SRS in n = 100 indicate that
the proportion is much smaller than what SRS can precisely estimate with this
sample size. In such a case, the 9% more likely provides an upper bound to v.
However, we suggest combining the results of the two methods in such cases by
using the result of the jackknife method for a better lower bound than just zero.

Figures3 and 4 show how the accuracy of SRS estimates increases as the
desired error margin e decreases. Decreasing e consequently increases s. The fig-
ures also show how SRS is able to accurately estimate the fraction of v with rel-
atively small s. As we mentioned before, the required s does not directly depend
on n, but since the fraction of v usually declines as n grows [7], the required s will
increase with n as shown in Table 1. The values of s in Table 1 are obtained from
Eqs. (2) and (3) by setting p = (p)"F'" (obtained from Eq. (7)), 24 /2 = 2.576 and
e as shown in the table. In both problems and in both landscapes, most of the
basin sizes are small and only very few ones are large.

5 Conclusions

Simple random sampling with the Clac provides a simple way to obtain an
unbiased statistical estimate of the number of local optima. The accuracy of
the obtained estimate depends on the sample size s, which can be determined
for a desired margin of error e. A negative lower bound of the Clpc usually
indicates that the proportion is smaller than the desired e. In such a case, s can
be increased considering that it only costs at most |[N(z)| + 1 fitness evaluations
per configuration. This is practical as long as the proportion is not exceedingly
small. Alternatively, the estimate of SRS can be used as an upper bound as it
is more likely to provide an overestimate in such cases. It can be combined with
the estimate of another method that applies local search to an initial sample
for a lower bound other than zero (since these methods usually tend to provide
an underestimate [12]). We recommend that SRS should be the first method to
use for estimating the number of optima, especially when no prior information
is available about the problem being studied.
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