evoVision3D: A Multiscale Visualization
of Evolutionary Histories

Justin J. Kelly®™» and Christian Jacob®)

Department of Computer Science, University of Calgary,
2500 University Dr NW, Calgary, AB T2N 1N4, Canada
{kellyjj,cjacob}@ucalgary.ca
http://www.ucalgary.ca

Abstract. Evolutionary computation is a field defined by large data sets
and complex relationships. Because of this complexity it can be difficult
to identify trends and patterns that can help improve future projects
and drive experimentation. To address this we present evo Vision3D, a
multiscale 3D system designed to take data sets from evolutionary design
experiments and visualize them in order to assist in their inspection and
analysis. Our system is implemented in the Unity 3D game development
environment, for which we show that it lends itself to immersive naviga-
tion through large data sets, going even beyond evolution-based search
and interactive data exploration.

Keywords: Evolutionary computation - Multiscale - Visualization -
Game engine

1 Introduction

It is said that history is the greatest teacher. Sometimes in order to move forward
one must review past decisions and choices in order to identify common trends
and patterns to predict future outcomes. This historical evaluation is especially
valuable in interactive evolutionary algorithms [6] and genetic programming [12],
where users review past experiments and trends in order to improve and refine
their selection algorithms and fitness evaluations. However, evolutionary systems
often produce very large data sets filled with complex relationships, making it
difficult for a human to effectively process. Additionally, there are times when
a system’s requirements can suddenly change, rendering previous evaluations
insufficient and forcing the user to begin their review from scratch. To address
these issues we present evo Vision3D, a multi-level visualization environment, dis-
playing complex evolutionary data in a 3-dimensional, immersive scene (Fig. 1).
In this paper we will explore evo Vision3D’s features and how we have expanded
upon evo Version, an evolutionary data tracking and synchronization tool, we
have developed earlier [10].

© Springer International Publishing AG 2016
J. Handl et al. (Eds.): PPSN XIV 2016, LNCS 9921, pp. 942-951, 2016.
DOI: 10.1007/978-3-319-45823-6_88



evoVision3D: A Multiscale Visualization of Evolutionary Histories 943

Fig. 1. Example of an evolutionary design workspace in 3D virtual reality using evo Vi-
sion3D: columns represent experiments, disks denote populations, whose colours depict
average fitness.

2 Related Work

With the advent of highly capable video game development environments, such
as Unity 3D [4], it has become more and more common to use game engines for
scientific research and visualization [15]. Taking advantage of advanced visuali-
sation libraries and built-in physics engines, there is substantial opportunity for
their integration into professional research. In this paper, we present related work
in the areas of (1) evolutionary visualization, (2) VR technology and (3) evo Ver-
sion, one of our previous systems implemented in the Unity 3D Game Engine.

2.1 Evolutionary Visualization

Building upon the foundation laid by evo Version, we draw inspiration from pre-
vious works. We combine a node-ring graph visualization [9] with a multiscale
visualization model [14] to display data efficiently and with a dense arrangement
of visual information without becoming overwhelming. We organize each session
into a set of discrete generations represented by a series of stacked rings (Fig. 1).

We have drawn inspiration from the FEvoShelf system, which applies tech-
niques normally found in photo management software, organizing evolutionary
data in a manner reminiscent to programs such as iTunes™ [8]. We use a sim-
ilar modular design, providing a flexible and plug-in friendly environment. As
we will demonstrate, the straightforward presentation of data makes searching
through larger populations smoother and less cumbersome. evo Vision3D differs
from EwvoShelf due to our use of 3D visualization rather than 2D with respect
to result presentation and navigation (see Sect.3.1). With evo Vision3D we pro-
vide a tool to coordinate collaborative development among multiple users, rather
than just one unsynchronized account.



944 J.J. Kelly and C. Jacob

We expand on Daida et al.’s work on mapping expression trees to a circu-
lar 2D grid, which provides a simple visualization, facilitating the identification
of trends and patterns across a genetic programming session [7]. In compari-
son, evo Vision3D enables data inspection, filtering, and analysis across multiple
experiments. A visual analytics interface for evolutionary data has been discussed
in [13]. More traditional 2D scatterplots are used to inspect and categorization
data. In contrast, evoVision3D expands the data presentation to 3D and across
multiple evolutionary sessions.

2.2 VR Technology and 3D Game Engines

Following evo Version [10] and Shepherd’s genome browser [15], evo Vision3D is
built using the Unity 3D game engine [4]. With the recent increase in pub-
lic availability for professional-quality game engines and their active developer
communities, these engines have proven to be an extremely valuable asset in
the development of visualization systems. A notable example of this is Unity’s
built-in support for virtual reality systems such as the Oculus Rift [3], allowing
for easy integration of these systems into immersive data display solutions.

2.3 evoVersion

evo Version is a system designed to collect, store and visualize interactive evolu-
tionary data. evoVersion utilizes the iterative storage methodology of software
version control systems such as Git [2] and Subversion [1] and applies it to evolu-
tionary computation in order to record, organize and analyze the resulting data.
It consists of three primary components: interactive selection, data storage and
basic 3D visualization. The interactive selection component handles user-driven
evaluation and evolution of the phenotype population. The data storage com-
ponent records all iterations of the population on a remote SQL server. The
visualization component takes the data stored in the database and visualizes
histories of evolutionary designs in a column-based format (Fig. 2). evo Vision3D
builds upon this system and focuses on improving the functionality and perfor-
mance of the visualization component with regard to the existing data collection
and storage mechanics while using the data sets produced by evo Version as the
primary data source.

3 The evoVision3D System

evo Vision3D seeks to build upon the visualization scheme seen in evo Version and
provide the user with intuitive and efficient means of visualizing complex evo-
lutionary data sets from various evolutionary experiments. To achieve this evo-
Vision3D combines evoVersion’s data arrangement with an additional set of
features in order to further assist the user as they examine the data visualiza-
tion space. These features include: (1) a spatial arrangement of the visual data
representations, (2) a multi-level abstraction of data, (3) genealogy tracing for
specific elements, (4) similarity filtering, and (5) a set of dynamic interface panels
summarizing key details and statistics of a given element.



evoVision3D: A Multiscale Visualization of Evolutionary Histories 945

3.1 Data Arrangement

In evoVision3D, each of a user’s evolutionary experiments are treated as a dis-
tinct event with a series of discrete populations arranged in ascending historical
order. Each evolutionary experiment, or session, is represented by a single verti-
cal column (Fig. 1). The height of this column reflects the number of generations
during that experiment, allowing the viewer to easily determine which sessions
were the most active. Session columns are arranged in a spiral pattern, growing
from previous sessions towards the center to the newest around the outer edge.

3.2 Multiscale Abstraction

A common problem encountered when visualizing these kinds of data sets in 3D
is the limits of computer memory and rendering capabilities, making it imprac-
tical to fully render each individual phenotype at once when dealing with larger
data sets. To address this challenge, evo Vision3D utilizes multiscale abstraction
of the data sets to reduce the computational overhead incurred during the visu-
alization, improving both load times and frame rate significantly. Similar to [5],
evo Vision3D uses multiple levels of visualization. Each level differs in terms of
breadth and detail of the data portrayed in order to collect both general and
specific details with regards to evolutionary design histories.

Based on a hierarchal storage structure, our system currently operates on
multiple levels of detail: sessional, generational, and individual (Fig.2). The ses-
sional level data is represented as a series of stacked disks arranged to form a
column. Each of these disks represents a single generation of that session. Disks
are arranged in ascending order of creation, placing the first generation at the
bottom and the most recent generation at the top. The color of the disk denotes
the average fitness of the entire population at that point in time during the
experiment. Each color lies along a linear gradient between red and green, where

=88 _

Sessional Level Generational Level Individual Level

(a) (b) (c)

Fig. 2. The three levels of scale used in evoVision3D in descending order of detail.
Automatic scale transition is triggered by the user approaching a specific object. (Color
figure online)



946 J.J. Kelly and C. Jacob

red denotes a fitness of 0 (worst rating) and green represents a fitness of 100
(best rating). Alternatively, an object colored gray either has yet to be evalu-
ated or has had its coloring toggled off by the user. By observing the color of
each disk within the column the user can get a general feel for the quality of a
session (Fig. 1).

At the generational level (Fig.2b), each disk allows the user to view a series
of nodes arranged in a ring within the disk. Each node, depicted as a distinct
3D object, represents a single member of a population. The color of each node
represents the specific fitness of its corresponding element. This gives a more
detailed breakdown of a generation’s population without the need to render
each individual phenotype, while also providing a quick visual summary of their
fitness ratings.

At the individual level (Fig. 2¢) the system renders the individual phenotypes
of the elements within a generation. The nodes from the generational level lose
their transparency and a representation of that element’s phenotype is rendered
inside the node. This presumes that a visual representation is available for each
element. This allows the user to see a depiction of the element in combination
with its fitness, represented by the color hue.

Each of these levels are rendered dynamically on demand. This keeps the
memory overhead for the system minimal, while also reducing the amount of
content loaded when the visualization engine initializes. This allows the system
to maintain a high degree of efficiency even when rendering large data sets. The
transition between each level of detail can be both manually and automatically
triggered as needed. Automatic transitions are triggered based on the user’s
position relative to the session columns in the scene. A generation disk enters
the generational level of detail when the distance between their position and
the center point of a given disk is less than a user-defined value (Fig.3). When
this distance once again becomes greater than this user-set value the disk will
return to its previous sessional level of detail (an opaque colored disk). The
individual level of detail is triggered when the distance between the user and
a disk is less than the radius of a generation’s disk. In order to automatically
trigger this transition the user enters the column in question, providing a 360
degree panoramic view of the local population. As with the generational level,
the disk returns to its previous level of detail when the user exits the column
space of that particular session.

Manual transitions can be invoked through key strokes at any time and will
set the entire scene to a specific level of detail without regard to the user’s
position in the scene. These manual modes can be useful when trying to identify
trends at a certain level of detail, allowing the user to navigate through and
inspect the visualization space. This allows the system to maintain a minimal
amount of wait time to load each scene.

3.3 Genealogy Tracing

One of the key aspects to evolutionary systems is their application of iterative
development. New elements are derived from pre-existing elements through a



evoVision3D: A Multiscale Visualization of Evolutionary Histories 947

Side View Top View

Generational Detail -
. - - =~
Trigger Space _= = o

Internal Arrangement

Fig. 3. An illustration of the conceptual boundaries used to trigger scale transitions
in the visualization space. As the user approaches a generation disk its visual models
become more and more detailed.

combination of crossover and mutation operations. Mutation is the process of
applying a random modification to an existing genotype, while crossover is the
act of combining two or more genotypes to produce a new child that shares
a part of each parent’s genotype combined together [10]. It is therefore quite
valuable to maintain an understanding of an element’s ancestry in order to help
identify trends and patterns created through inheritance. In evoVision3D one
can trace through a targeted element’s genealogical history in order to identify
and visualize the relationship it shares with its ancestors (Fig.4). Serving as a
filter, the genealogy trace removes all objects not related to the selected element
from the scene and sets all remaining nodes to the individual detail level. The
system then procedurally generates a series of line segments, where each line
represents the relationship between a parent and its children. These connections
produce a 3-dimensional family tree for the selected element, allowing the user
to observe the genetic changes that culminated in the production of the target
element. This operation uses a breadth-first expansion down the generations,
allowing the user to examine the connections from more recent generations to
older generations.

3.4 Similarity Filtering

Similarity filtering allows the user to identify what sections of a user’s experiment
set occupy the same genotype neighborhood. It allows the user to select an
element and calculate its similarity to all other elements present in the scene.
All elements whose similarity falls below a user-set threshold are filtered out,
leaving only those individuals that have significant similarities to the selected
element (Fig.5). The colors of these individual nodes and the encompassing
generational disks are changed from visualizing fitness to instead reflect the



948 J.J. Kelly and C. Jacob

Fig. 4. Visualizing an element’s genealogy: line segments illustrate the relationship
between parent and child (from top to bottom in each column). Cyan lines indicate
a mutation while yellow lines denote a crossover relationship, allowing for quick iden-
tification of development patterns within a session. The left column shows a mix of
mutation and crossover, the middle session evolved mostly by crossovers, whereas only
mutations created the individuals in the session on the right. (Color figure online)

Fig. 5. Filtering the scene based on genetic similarity. The chosen phenotype is pre-
sented in the top left of the screen and only the nodes that have reached a user-defined
degree of similarity are rendered in the scene. (Color figure online)



evoVision3D: A Multiscale Visualization of Evolutionary Histories 949

degree of similarity to the chosen element. Green denotes high similarity, while
red denotes low similarity.

3.5 Dynamic Summary Panel

The multiscale representation and color encoding provide an effective summary
of an element’s phenotype and fitness. evoVision3D supplements this by pro-
viding three dynamic interface panels with a summary of an object’s data and
statistics. This function dynamically loads the data of any selected object in
the scene, producing a summary of the underlying data, a close up view of its
phenotype (if applicable) and a comparison of its fitness compared to all other
objects in the scene (Fig. 6).

==

Fig. 6. Panel overlay. By selecting an object in the visualization space a summary view
of key information is displayed, including summary data (center), phenotype viewer (to
the right) and fitness statistics (to the left).

Data Panel. The data panel serves as a summary of an item’s data as stored in
the SQL database. Appearing next to the user’s cursor, it consists of a translucent
back panel and a textual output of key information. The information changes
depending on the detail level. At the sessional level, a generation’s disk dis-
plays high level information such as the population size at that generation and
the ID number of the associated session. Alternatively, at the individual and
generational levels the panel instead displays information for the now visible
individual.

Phenotype Viewer. Displayed in the bottom right corner of the screen (Fig. 6),
this panel allows the user to quickly check an element’s phenotype without having
to trigger the individual level of detail. This is useful for inspecting individual
elements while operating on the generational level of detail, without the need



950 J.J. Kelly and C. Jacob

to reposition the camera while still allowing the user to rotate and magnify the
viewer space. This can assist in the identification of patterns shared by elements
such as, for example, a certain fitness range via manual observation and selection.

Radial Glyph. Expanding on evo Version’s radial fitness rings [10], we added a
glyph display contained inside a circular boundary, depicted in the bottom left
corner (Fig.6) This panel consists of two primary components: a measurement
guide and a data map. The measurement guide is a translucent blue diamond
that serves as a form of relative measurement for the given data. Each of the four
points on this diamond represents a specific attribute. Starting from the topmost
point and moving clockwise these points measure the fitness of the current target
(Ind), the average fitness of the current target’s generation (Gen), the average
fitness of the target session (Ses) and the average fitness for every single session
currently in the scene (All). The respective values are plotted along the line
between the center of the guide and its corresponding corner. The higher the
value, the closer its point is plotted to the outer edge of the guide. The points
are connected to form an irregular n-sided shape that, for example, represents
the target’s fitness rating compared to other elements in the scene. This model
of representation can easily be expanded to include more than four values.

4 Conclusion and Future Work

evo Vision3D is a promising avenue for visualizing and exploring evolutionary
histories. Implemented in the Unity game engine [4], it provides a robust suite of
navigation and filtering tools for evolutionary data inspection and analysis. This
level of performance also makes VR support viable for the system as a whole,
allowing for a new avenue of immersive visualization to be explored. At this
point our future work is threefold: the expansion of existing features, integration
of gesture control to support immersive VR interaction and extending use of the
system to more complex evolutionary systems in order to test its viability in the
context of dense evolutionary data visualization [11] and collaborative coevolu-
tion [16]. We plan to expand upon the current color encoding and radial glyph
graphs used to analyze and compare the fitnesses of individual elements and gen-
erations. We are also working on a flexible search tool capable of visualizing the
similarity between population elements in terms of both genotype and phenotype
features to assist in identifying commonalities and trends within the data set.
The addition of gesture control to supplement peripheral systems such as the
Oculus Rift Virtual Reality Headset [3] makes navigation through the virtual
space more natural and intuitive, providing a logical alternative to the tradi-
tional mouse and keyboard interaction. Finally, in order to further reduce the
computational overhead and allow for rendering of even larger scenes we plan
to apply a dynamic octree implementation similar to that seen in Shepherd’s
genome exploration system [15] to further improve performance.



evoVision3D: A Multiscale Visualization of Evolutionary Histories 951

References

Grs LN

10.

11.

12.

13.

14.

15.

16.

Apache subversion; enterprise-class centralized version control for the masses.
https://subversion.apache.org/

git -local-branching-on-the-cheap. https://git-scm.com/

Oculus. https://www.oculus.com/en-us/

Unity 3d game engine. https://unity3d.com/

Stolte, C., Tang, D., Hanrahan, P.: Multiscale visualization using data cubes. IEEE
Trans. Vis. Comput. Graph. 9(2), 176-187 (2003)

Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary algorithms for
solving multi-objective problems, vol. 242. Springer, New York (2002)

Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in
genetic programming. Genet. Programm. Evolvable Mach. 6(1), 79-110 (2005)
Davison, T., von Mammen, S., Jacob, C.: FvoShelf: a system for managing and
exploring evolutionary data. In: Schaefer, R., Cotta, C., Kotodziej, J., Rudolph,
G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 310-319. Springer, Heidelberg (2010)
Etemad, K., Carpendale, S., Samavati, F.: Node-ring graph visualization clears
edge congestion. In: Proceedings of the IEEE VIS Arts Program (VISAP), pp.
67-74

Kelly, J., Jacob, C.: evoVersion: visualizing evolutionary histories. In: IEEE
Congress on Evolutionary Computation, CEC 2016. IEEE (2016) (in print)
Koger, B., Arslan, A.: Transfer Learning in Genetic Algorithms (2012)

Koza, J.R.: Genetic Programming: On The Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

Lutton, E., Fekete, J.D.: Visual analytics of EA data. In: Proceedings of the 13th
Annual Conference on Genetic And Evolutionary Computation - GECCO 2011,
pp. 145-146 (2011)

Miller, R., Mozhayskiy, V., Tagkopoulos, L., Ma, K.L.: EVEVis: a multi-scale visu-
alization system for dense evolutionary data. In: 2011 IEEE Symposium on Bio-
logical Data Visualization (BioVis), pp. 143-150 (2011)

Shepherd, J.J., Zhou, L., Zhang, Y., Zheng, J., Tang, J.: Exploring genomes with
a game engine. In: Proceedings - 2013 IEEE International Conference on Bioinfor-
matics and Biomedicine, IEEE BIBM 2013, vol. 169(207890), pp. 26-30 (2013)
Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985-2999 (2008)


https://subversion.apache.org/
https://git-scm.com/
https://www.oculus.com/en-us/
https://unity3d.com/

	evoVision3D: A Multiscale Visualization of Evolutionary Histories
	1 Introduction
	2 Related Work
	2.1 Evolutionary Visualization
	2.2 VR Technology and 3D Game Engines
	2.3 evoVersion

	3 The evoVision3D System
	3.1 Data Arrangement
	3.2 Multiscale Abstraction
	3.3 Genealogy Tracing
	3.4 Similarity Filtering
	3.5 Dynamic Summary Panel

	4 Conclusion and Future Work
	References


