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Abstract. This paper presents entropy-based population diversity mea-
sures that take into account dependencies between the variables in order
to maintain genetic diversity in a GA for the traveling salesman prob-
lem. The first one is formulated as the entropy rate of a variable-order
Markov process, where the probability of occurrence of each vertex is
assumed to be dependent on the preceding vertices of variable length in
the population. Compared to the use of a fixed-order Markov model, the
variable-order model has the advantage of avoiding the lack of sufficient
statistics for the estimation of the exponentially increasing number of
conditional probability components as the order of the Markov process
increases. Moreover, we develop a more elaborate population diversity
measure by further reducing the problem of the lack of statistics

1 Introduction

Maintaining the genetic diversity in the population is one of the most impor-
tant factors for bringing out the potential of genetic algorithms (GAs). One of
the approaches to maintain population diversity is to design an appropriate mea-
sure of population diversity, which are used as a trigger to activate diversification
procedures [8,9] and a part of the fitness function to maintain population diver-
sity in a positive manner [3,5,11].

As is well known in information theory, entropy is a measure of the uncer-
tainty of a probability distribution and it has been used to design population
diversity measures. Most of the entropy-based population diversity measures
are defined as the sum of the entropies of the univariate marginal distributions
of all variables in the form of −∑n

i=1

∑
a∈A P (Xi = a) log P (Xi = a). This

type of population diversity measure is widely used in GAs for the knapsack
problem [4], binary quadratic programming problem [10], traveling salesman
problem [3,5,7,8], and others [11]. This entropy measure, however, does not
have an ability to capture dependencies between the variables.

In our previous work [6], we proposed an entropy-based diversity measure
that takes into account dependencies between the variables, and this measure
was used to maintain population diversity in a GA for the traveling salesman
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problem (TSP). This diversity measure, denoted as Hm, was formulated as the
entropy rate of a Markov process of order m, where the probability of occurrence
of each vertex at a certain position was assumed to be dependent on the m
preceding vertices in the population (tours). The use of the diversity measure
Hm with an appropriate value of m (= 4) improved the performance of the GA.

In the practical use of a fixed-order Markov model, there is seldom sufficient
data to accurately estimate the exponentially increasing number of conditional
probability components as the order of the Markov model increases. A variable-
order Markov model is useful to reduce this problem, where the probability of
occurrence of each symbol is assumed to be dependent on the preceding symbols
of variable length, which varies depending on the available statistics. Variable-
order Markov models have been successfully applied to areas such as machine
learning [1] and bioinformatics [2]. In this paper, we develop an population diver-
sity measure based on a variable-order Markov model, which models the prob-
ability distribution of individuals in the population. Moreover, we improve this
diversity measure by further reducing the problem of the lack of data.

The remainder of this paper is organized as follows. In Sect. 2, we first
describe the diversity measure Hm and its variant proposed in the previous work.
Then, we propose two entropy-based diversity measures derived from variable-
order Markov models. The GA framework used to evaluate the proposed diversity
measures is described in Sect. 4. Computational results are presented in Sect. 5
and conclusion is given in Sect. 6.

2 Previous Work

In [6], we proposed an entropy-based population diversity measure that takes
into account dependencies in sequences of vertices included in the population of
the GA for the TSP. This section outlines this work.

Let Si (i = 1, . . . , n) be a random variable representing the i-th vertex in
the tours of the population, where n is the number of the vertices (cities). The
probability of occurrence of each vertex at a certain position is modeled as
a Markov process of order m, where it is assumed to be dependent on the m
preceding vertices in the tours of the population. Given that each tour has a cyclic
structure, the joint probability distribution P (S1 = s1, S2 = s2, . . . , Sn = sn),
which is denoted as P (s1, s2, . . . , sn) for simplicity, is represented by the following
formula, where index i + n (1 ≤ i ≤ m) corresponds to i.

P (s1, s2, . . . , sn) =
n∏

i=1

P (si+m | si, . . . , si+m−1) (1)

Given that each tour can start from an arbitrary vertex, the joint probability
distribution of any subset of the sequence of random variables should be invari-
ant with respect to shifts in the index. Therefore, the entropy H of this joint
probability distribution is equivalent to nHm (Eq. 2), where Hm (Eq. 3) is the
entropy rate of the Markov process of order m that models the probability of
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occurrence of each vertex in the population. For a more detailed explanation of
Eq. 2, see the previous work. Equation 3 can be easily transformed into Eq. 5.

In information theory, the entropy rate of a data source is the average number
of bits per symbol needed to encode it. Therefore, the existence of the same
sequence consisting of up to m + 1 vertices in the population will decrease the
value of Hm.

H = −
∑

s1

· · ·
∑

sn

P (s1, . . . , sn) log P (s1, . . . , sn) = nHm (2)

Hm = −
∑

s1

. . .
∑

sm+1

P (s1, . . . , sm+1) log P (sm+1 | s1, . . . , sm) (3)

= −
∑

s1

· · ·
∑

sm+1

P (s1, . . . , sm+1) log
P (s1, . . . , sm+1)
P (s1, . . . , sm)

(4)

= Hm+1 − Hm, (5)

where
Hk = −

∑

s1

· · ·
∑

sk

P (s1, . . . , sk) log P (s1, . . . , sk). (6)

To compute Hk in the asymmetric TSP, all sequences of length k are sam-
pled in the population, and P (s1, . . . , sk) is estimated by N(s1,...,sk)

nNpop
, where

N(s1, . . . , sk) is the number of a sequence of vertices {s1, . . . , sk} in the popula-
tion consisting of Npop tours. In the symmetric TSP, the sampling is conducted
in both travel directions and P (s1, . . . , sk) is estimated by N(s1,...,sk)

2nNpop
.

Another diversity measure, denoted as H ′
m, was also proposed. This measure

is defined as the sum of the diversity measures Hk (k = 1, . . . , m), which can
be simplified as Eq. 7. This diversity measure was designed in an ad hoc way to
reduce the problem of the lack of statistics for the accurate estimation of Hm.

H ′
m = H1 + H2 + · · · + Hm = Hm+1 − H1 (7)

3 Population Diversity Measures Based on
Variable-Order Markov Models

3.1 Motivation

The population diversity measure proposed in this paper is also defined as the
entropy rate of a Markov process. We denote a set of the symbols generated
from an information source as L. In what follows, we use random variables
Si (i = . . . ,−2,−1, 0) to represent a Markov process, where S0 represents the
symbol to be observed next and S−i (i > 0) represents the i-th preceding symbol.
The expression of Hm is therefore given by the following formula.

Hm = −
∑

s−m

. . .
∑

s−1

∑

s0

P (s−m, . . . , s−1, s0) log P (s0 | s−m, . . . , s−1) (8)
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In theory, the value of Hm gives the entropy rate of an Markov
process of order k (i.e., Hm = Hk) as long as k ≤ m because P (s0 |
s−m, . . . , s−k, . . . , s−1) = P (s0 | s−k, . . . , s−1) in this case. Therefore, m should
be set to a greater value so that the entropy rate Hm has an ability to cap-
ture higher-order dependencies in a sequence of symbols generated from an
information source. If m is too large, however, Hm would not be a meaning-
ful population diversity measure because there is seldom sufficient samples of
sequences in the population to accurately estimate the conditional probability
distributions P (s0 | s−m, . . . , s−1), s−m, . . . , s0 ∈ L, which are estimated as
N(s−m,...,s−1,s0)
N(s−m,...,s−1)

. Therefore, there is a tradeoff between the potential ability to
capture higher-order dependencies and the estimate accuracy of the conditional
probability distributions. The population diversity measures proposed in this
paper aim to capture higher-order dependencies in sequences of vertices in the
population while reducing the problem of the lack of data.

3.2 A Population Diversity Measure Htr1
m

We model the probability of occurrence of a symbol (vertex) appearing in
sequences of symbols (sequences of vertices in the population) as a variable-order
Markov process. In a variable-order Markov process, the probability distribution
of the next symbol s0 depends on the preceding symbols of variable length k. The
basic idea is to determine the value of k adaptively so that the number of samples
N(s−k, ..., s−1) is a sufficient statistic for estimating the conditional probability
distribution P (s0 | s−k, . . . , s−1). For example, if a specific sequence of symbols
{. . . , s′

−3, s
′
−2, s

′
−1} is observed at a certain point, the conditional probability

distribution of occurrence of the next symbol s0 is modeled as P (s0|s′
−k, ..., s

′
−1)

such that the number of samples N(s′
−k, ..., s

′
−1) is greater than a predefined

minimum number of samples.
A variable-order Markov process is characterized by a set of the conditional

probability distributions: P (s0|sc) , sc ∈ S, where S is a set of sequences of
symbols for the conditioning variables and each element sc represents a specific
sequence of symbols of any length that is less than or equal to m. Here, we put
the upper limit on the length of sequences for the conditioning variables because
it is impractical to store all conditional probability components if m is too large
(e.g. m > 10). For any sequence of symbols {. . . , s−2, s−1} at a certain point, the
length of the sequence assigned to the conditioning variables must be uniquely
determined. To represent set S that satisfies this requirement, a so-called context
tree is useful. Let s̃c be the reverse sequence of sc and S̃ = {s̃c|sc ∈ S}. The
elements of S̃ are represented as the leaf nodes of a context tree as illustrated
in Fig. 1 (Left), where every node has either 0 or |L| children.

The entropy rate of the variable-order Markov process, which we denote as
Htr1

m , is then defined by the following formula.
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Htr1
m = −

∑

sc∈S

∑

s0∈L

P (sc, s0) log P (s0 | sc) = −
∑

sc∈S

∑

s0∈L

P (sc, s0) log
P (sc, s0)

P (sc)

= −
∑

sc∈S

∑

s0∈L

P (sc, s0) log P (sc, s0) +
∑

sc∈S
P (sc) log P (sc) (9)

The entropy rate Htr1
m is closely related to Hm. If a context tree S̃ is represented

as a perfect tree with depth m, Htr1
m is equivalent to Hm, meaning that Htr1

m

is a generalization of Hm. In addition, Htr1
m can be viewed as an approximation

of Hm. In fact, Htr1
m is obtained from Hm though the approximation of P (s0 |

s−m, . . . , s−k, . . . , s−1) = P (s0 | s−k, . . . , s−1) for all {s−k, . . . , s−1} ∈ S.
Next, we describe how to determine set S̃ (and equivalently S). The corre-

sponding context tree S̃ is updated at fixed intervals (see Sect. 4) by the following
procedure, where ratio is a parameter taking a value between 0 and 1.

1. S̃ is initialized as the perfect tree of depth one, i.e., S̃ = {s−1|s−1 ∈ L}.
2. For each of the leaf nodes {s−1, ..., s−k} ∈ S̃, if there exists at least one value

s′
−(k+1) ∈ L such that N(s′

−(k+1), s−k, . . . , s−1) ≥ Npop ∗ ratio, this node is
expanded to generate the new leaf nodes {s−1, ..., s−k, s−(k+1)}, s−(k+1) ∈ L.

3. Expansions of the leaf nodes are iterated until no expansion is possible or
the depth of each leaf node reaches the predefined maximum number m. The
resulting tree S̃ is returned.

The aim behind the expansion of a leaf node {s−1, ..., s−k} ∈ S̃ is to capture
higher-order dependency expressed as the conditional probability distribution
P (s0|s′

−(k+1), s−k, . . . , s−1) only when it is judged to be reliable. The parameter
ratio balances the tradeoff between the potential ability to capture higher-order
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Fig. 1. (Left) A context tree representation of S̃, where L = {a, b, c} and the threshold
is 8. Each node is connected by a thick link if the number of the corresponding sequence
in the population (indicated beside each node) is greater than or equal to the thresh-
old. The corresponding Markov process is defined as follows: P (s0|a, a), P (s0|b, a),
P (s0|c, a), P (s0|b), P (s0|a, a, c), P (s0|b, a, c), P (s0|c, a, c), P (s0|b, c), and P (s0|c, c).
(Right) A context tree representation of S̃merge obtained from S̃. Nodes in each dotted
frame are merged. The corresponding Markov process is defined as follows: P (s0|a, a),
P (s0|b, a), P (s0|c, a), P (s0|b), P (s0|a ∨ b, a, c), P (s0|c, a, c) and P (s0|b ∨ c, c).
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dependencies and the estimate accuracy of the conditional probability distri-
butions. However, this expansion collaterally generates unreliable conditional
probability distributions P (s0|s′′

−(k+1), s−k, . . . , s−1) for s′′
−(k+1) ∈ L \ {s′

−(k+1)}
because the values of N(s′′

−(k+1), s−k, . . . , s−1) are less than the predefined
threshold. Note that if expansion of a leaf node is allowed only if the num-
ber of samples is greater than the threshold for all child nodes, no expansion is
likely to occur.

3.3 A Population Diversity Measure Htr2
m

As suggested in the previous subsection, unreliable conditional probability dis-
tributions included in the formulation of Htr1

m have a potentially harmful effect
on the evaluation of population diversity. To reduce this problem, we modify the
variable-order Markov model used to derive Htr1

m .
The basic idea is to merge unreliable conditional probability distributions

into a single one in order to increase the number of samples for the condition-
ing variables. One simple method is to merge the unreliable conditional parts
{s′′

−(k+1), s−k, . . . , s−1}, s′′
−(k+1) ∈ L\{s′

−(k+1)} into a single one. Figure 1 illus-
trates an example where the unreliable conditional parts (nodes connected by
thin links) in S̃ are merged accordingly. We denote the resulting set of sequences
of symbols for the conditioning variables and corresponding context tree as
S̃merge. For example, a merged conditional probability distribution P (s0|b∨ c, c)
is estimated by N(b,c,s0)+N(c,c,s0)

N(b,c)+N(c,c) . Although the number of samples for a merged
conditional part may be still less than the predefined threshold, the problem of
the lack of sufficient data will be alleviated. We denote the entropy rate of the
variable-order Markov process defined by S̃merge as Htr2

m .

4 GA Framework

To evaluate the ability of the proposed population diversity measures Htr1
m and

Htr2
m , we perform the GA proposed in [5] as in the case of the previous work [6].

Algorithm 1 gives the GA framework where brief comments are written directly
in the algorithm. For more details, see the previous work [6].

An important point is that each of the population diversity measures is incor-
porated into the evaluation function used for selecting individuals to survive
(line 8). Let L be the average tour length of the population and H the popula-
tion diversity measure (Htr1

m or Htr2
m ). For each individual y ∈ {c1, . . . , cNch

, pA},
it is evaluated by the following evaluation function (Eq. 10), and the one with
the smallest value is selected to replace the population member selected as pA.
Here, ΔL(y) and ΔH(y) denote the differences in L and H, respectively, when
xr(i) (= pA) is replaced with an offspring solution y. This evaluation function is
motivated to minimize L − TH after the replacement, where T is a coefficient
that takes a balance between the influences from L and H and it is adaptively
updated (basically decreased) during the course of the search. Note that offspring
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Algorithm 1. Procedure GA

1: Generate initial population {x1, . . . , xNpop}; // a simple local search is used;
2: repeat
3: Update S̃ or S̃merge based on the procedure described in Section 3 ;
4: Let r(·) be a random permutation of 1, . . . , Npop;
5: for i := 1 to Npop do
6: pA := xr(i), pB := xr(i+1); // set a pair of parents
7: {c1, . . . , cNch} := Crossover(pA, pB); // generate Nch offspring solutions

using edge assembly crossover
8: xr(i) := Select Best(c1, . . . , cNch , pA); // select the best individual to

replaces the population member selected as pA
9: end for

10: until a termination condition is satisfied
11: return the best individual in the population;

solutions that increase L are never selected in order to prevent the population
from not converging, i.e., no replacement occurs when pA itself is selected.

Eval(y) =
{

ΔL(y) − TΔH(y) (ΔL(y) ≤ 0)
∞ (ΔL(y) > 0) (10)

For every offspring solution y, ΔH(y) can be computed in O(km) time, where
k is the number of edges of an offspring solution y that do not exist in the parent
pA (k is usually much smaller than n). Each time pA is replaced with the selected
offspring solution, the values of N(·), which are stored in the form of a tree, can
be updated in O(km) time.

5 Experimental Results

5.1 Experimental Settings

To investigate the ability of the proposed population diversity measures Htr1
m

and Htr2
m , we performed the GA described in the previous section by using each

of the population diversity measures in the evaluation function (Eq. 10). The
parameters for the GA were set as follows: Npop = 300 and Nch = 30. Note
that the same settings were used in the previous work [6] for evaluating the
population diversity measures Hm and H ′

m. We tested the proposed population
diversity measures with the following parameter settings.

• Htr1
m (m = 6, ratio = 0.05, 0.1, 0.2, 0.3)

• Htr2
m (m = 6, ratio = 0.05, 0.1, 0.2, 0.3)

• Htr2
m (m = 8, ratio = 0.1)

For each setting, we performed the GA 30 times on 21 instances with
sizes ranging from 10,000 to 25,000 in the well-known benchmark sets:
TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/), National
TSPs (http://www.math.uwaterloo.ca/tsp/data/index.html), and VLSI TSPs.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://www.math.uwaterloo.ca/tsp/data/index.html
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5.2 Results

Table 1 shows the solution quality of the GA using the proposed population
diversity measures Htr1

m and Htr2
m in the following format: the instance name

(instance) together with the optimal or best known solution (Opt. or UB), the
number of runs that succeeded in finding the optimal or best-known solution
(#S), and the average percentage excess over the optimal or best-known solutions
(A-Err). The result of the GA using the diversity measure H4, which achieved
the best solution quality among Hm (m = 1, 2, 3, 4, 6) in the previous work, are
also presented for a baseline comparison. We performed the one-sided Wilcoxon
rank sum test for the null hypothesis that the median of the distribution of tour
length obtained by the GA using each of Htr1

m and Htr2
m is greater than that

of GA using H4. If the null hypothesis is rejected as a significant level of 0.05,
results in the table are indicated by the asterisk. In addition, results are also
indicated by the dagger if the opposite null hypothesis is rejected.

Let us first summarize the results of the GA using the population diver-
sity measures Hm and H ′

m (m = 1, 2, 3, 4, 6, 8) proposed in the previous work.
Table 2 shows only averaged results taken from [6] (results of m = 8 are newly
added). As indicated in Table 2, the diversity measure Hm improves the ability
in evaluating population diversity with increasing the value of m up to 4, but the
greater values of m deteriorates the ability due to the lack of available samples
necessary to estimate the conditional probability distributions. The diversity
measure H ′

m also improves the ability in evaluating population diversity with
increasing the value of m up to 6. Moreover, the result of H6

′ is better than that
of H4. Considering the definition of H ′

m, this result suggests that the diversity
measure H ′

6 achieves a better balance between the ability to capture higher-
order dependencies and the estimate accuracy of the conditional probability
distributions, although the definition of H ′

m is somewhat ad-hoc.
Next, we focus on the results of the diversity measure Htr1

6 . Table 1 shows
that the GA using Htr1

6 achieves the best solution quality when the parameter
ratio is set to 0.2 or 0.3. For a smaller value of ratio, the solution quality is
deteriorated. This is a predictable consequence because if the value of ratio is too
small, it would not be likely to obtain a sufficient statistics from the population
necessary for the accurate estimation of the conditional probability distributions.
The use of Htr1

6 with the best parameter value for ratio (= 0.2 or 0.3), however,
shows only a slight improvement over the use of H4.

Next, we focus on the results of the diversity measure Htr2
6 . The GA using

Htr2
6 achieves the best solution quality when the parameter ratio is set to 0.1,

which is less than the best parameter value for Htr1
6 . Moreover, the best result

of Htr2
6 is better than that of Htr1

6 . These observations indicate that the use of
Htr2

m succeeds in capturing higher-order dependencies while reducing the prob-
lem of the lack of sufficient samples for the accurate estimation of the conditional
probability distributions. Compared to H4, the use of Htr2

6 with the best para-
meter value for ratio (= 0.1) significantly improves the solution quality in four
instances. However, this result is almost same as that of H ′

6.
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Table 1. Solution quality of the GA using the diversity measures Htr1
m and Htr2

m

H4 Htr1
6

ratio = 0.05 ratio = 0.1 ratio = 0.2 ratio = 0.3

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 24 0.00070 26 0.00047 29 0.00012∗ 29 0.00012∗ 28 0.00035

fi10639 520527 24 0.00011 21 0.00021 23 0.00016 23 0.00018 24 0.00010

rl11849 923288 25 0.00014 18 0.00037† 19 0.00030† 21 0.00026 27 0.00013

usa13509 19982859 22 0.00010 17 0.00017 24 0.00008 21 0.00010 19 0.00014

xvb13584 (37083) 29 0.00009 23 0.00081† 26 0.00036 27 0.00027 29 0.00009

brd14051 469385 23 0.00017 19 0.00026 26 0.00008 27 0.00005 26 0.00011

mo14185 (427377) 19 0.00014 20 0.00014 19 0.00018 18 0.00015 19 0.00016

xrb14233 (45462) 10 0.00279 9 0.00286 11 0.00279 10 0.00301 12 0.00271

d15112 1573084 16 0.00014 17 0.00008 16 0.00007 15 0.00005 17 0.00003

it16862 557315 6 0.00023 4 0.00044† 2 0.00040† 2 0.00039† 6 0.00030

xia16928 (52850) 24 0.00076 23 0.00050 18 0.00101 19 0.00095 16 0.00164†

pjh17845 (48092) 13 0.00132 17 0.00097 15 0.00125 15 0.00104 13 0.00118

d18512 645238 21 0.00009 20 0.00009 22 0.00008 23 0.00009 25 0.00007

frh19289 (55798) 30 0.00000 26 0.00030† 26 0.00024† 28 0.00012 30 0.00000

fnc19402 (59287) 19 0.00067 16 0.00079 18 0.00067 17 0.00079 19 0.00062

ido21215 (63517) 23 0.00058 18 0.00105 22 0.00058 27 0.00016 17 0.00110†

fma21553 (66527) 15 0.00090 10 0.00120 8 0.00120 16 0.00070 21 0.00050

vm22775 569288 0 0.00140 1 0.00141 0 0.00131 0 0.00121 1 0.00119

lsb22777 (60977) 21 0.00055 19 0.00060 22 0.00044 28 0.00011∗ 24 0.00033

xrh24104 (69294) 29 0.00005 28 0.00010 26 0.00019 28 0.00010 29 0.00005

sw24978 855597 9 0.00039 11 0.00047 14 0.00037 12 0.00031 11 0.00024

Average 19.1 0.00054 17.3 0.00063 18.4 0.00057 19.3 0.00048 19.7 0.00053

Htr2
6 Htr2

8

ratio = 0.05 ratio = 0.1 ratio = 0.2 ratio = 0.3 ratio = 0.1

Instance Opt.(UB) #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

xmc10150 (28387) 26 0.00059 25 0.00070 28 0.00023 26 0.00047 28 0.00023

fi10639 520527 20 0.00013 25 0.00008 24 0.00010 28 0.00004 27 0.00005

rl11849 923288 23 0.00019 29 0.00004∗ 28 0.00006 28 0.00006 25 0.00013

usa13509 19982859 21 0.00011 23 0.00016 24 0.00009 25 0.00007 23 0.00010

xvb13584 (37083) 27 0.00036 29 0.00009 25 0.00045† 25 0.00045† 25 0.00045†

brd14051 469385 25 0.00015 26 0.00009 27 0.00007 29 0.00003∗ 27 0.00006

mo14185 (427377) 25 0.00005∗ 23 0.00009 22 0.00013 17 0.00020 24 0.00012

xrb14233 (45462) 9 0.00308 8 0.00330 3 0.00396† 6 0.00374† 12 0.00249

d15112 1573084 15 0.00007 18 0.00005 20 0.00004 18 0.00004 18 0.00003

it16862 557315 6 0.00033 5 0.00027 3 0.00037† 5 0.00032 2 0.00035

xia16928 (52850) 22 0.00082 22 0.00069 23 0.00088 9 0.00227† 25 0.00063

pjh17845 (48092) 11 0.00132 19 0.00083 19 0.00083 19 0.00076∗ 22 0.00062∗

d18512 645238 19 0.00010 21 0.00007 19 0.00014 23 0.00006 24 0.00005

frh19289 (55798) 26 0.00042† 30 0.00000 29 0.00006 27 0.00024† 27 0.00018†

fnc19402 (59287) 22 0.00051 19 0.00062 20 0.00056 14 0.00118 20 0.00056

ido21215 (63517) 19 0.00079 25 0.00026 27 0.00021 23 0.00058 24 0.00031

fma21553 (66527) 23 0.00035∗ 22 0.00040∗ 19 0.00065 20 0.00055 26 0.00020∗

vm22775 569288 1 0.00107∗ 2 0.00091∗ 3 0.00094∗ 1 0.00119 2 0.00097∗

lsb22777 (60977) 23 0.00038 27 0.00016∗ 26 0.00022 26 0.00022 28 0.00011∗

xrh24104 (69294) 28 0.00010 28 0.00010 28 0.00010 29 0.00005 29 0.00005

sw24978 855597 20 0.00020∗ 14 0.00033 17 0.00020∗ 12 0.00032 18 0.00023∗

Average 19.6 0.00053 21.0 0.00044 20.7 0.00049 19.5 0.00061 21.7 0.00038
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Table 2. Solution quality of the GA using the diversity measures Hm and H ′
m

m = 1 m = 2 m = 3 m = 4 m = 6 m = 8

Div. #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err #S A-Err

Hm 16.7 0.00085 18.1 0.00066 18.2 0.00065 19.1 0.00054 16.1 0.00063 11.8 0.00094

H′
m 16.7 0.00085 19.0 0.00069 19.8 0.00061 20.5 0.00053 21.5 0.00046 20.8 0.00047

Note: When no diversity measure is incorporated, #S and A-Err are 1.2 and 0.00544,

respectively.

Next, we focus on the results of Htr2
8 with ratio = 0.1. We can see that the

solution quality of Htr2
8 is better than that of Htr2

6 . This result also indicates that
the core idea of Htr2

m make it possible to successfully capture higher-order depen-
dencies while reducing the problem of the lack of sufficient statistics. Moreover,
the use of Htr2

8 achieves the best solution quality among all population diversity
measures including H ′

6.

6 Conclusion

The proposed population diversity measure Htr1
m is defined as the entropy rate

of the variable-order Markov process with the aim of capturing higher-order
dependencies in sequences of vertices in the population while reducing the prob-
lem of the lack of sufficient statistics. The use of this diversity measure, however,
has shown only a slight improvement in evaluating population diversity over the
previously proposed entropy-based diversity measure Hm, which is based on the
fixed-order Markov model. On the other hand, another variant of the proposed
population diversity measure Htr2

m has succeeded in improving the abilities of
Hm and Htr1

m by further reducing the problem of the lack of sufficient statistics.
This research has shown a potential of entropy-based population diversity mea-
sures that take into account dependencies between the variables, and the efficacy
of the proposed population diversity measures should be investigated on other
permutation problems in the future work.
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