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ABSTRACT
We analyze the unrestricted black-box complexity of the n-
dimensional Jump function classes. We show very precise bounds
for various values of the jump size `, including a novel n + Θ(

√
n)

bound for the extreme case that only the middle one (for n even)
or the middle two (for n odd) Hamming levels are not part of the
plateau surrounding the optimum. To obtain these results, we sig-
ni�cantly extend the classic information theoretic argument. It
now allows to exploit structural properties of the underlying opti-
mization problems, whereas before it relied only on the number of
di�erent �tness values.

�is abstract for the GECCO’17 Hot-o�-the-Press track summa-
rizes work that appeared as M. Buzdalov, B. Doerr, and M. Kever.
�e unrestricted black-box complexity of jump functions. Evolu-
tionary Computation, 24(4):719-744, 2016 [4].

1 INTRODUCTION
To understand how di�cult a problem is for evolutionary algo-
rithms and other black-box optimizers, one proves upper bounds
for the problem di�culty by designing and analyzing reasonable
algorithms for the problem and lower bounds by studying how
fast a theoretically best possible algorithm at most can be. �ese
two approaches, design and analysis of algorithms on the one hand
and complexity theory on the other, complement each other. �eir
complementary nature has greatly spurred the development of al-
gorithms, both by pointing out areas with room for improvement
and by giving concrete hints on how to improve existing methods
(see [5] for a recent example).

In this work, we study the second question, that is, how fast in
principle a black-box optimization algorithm can solve certain opti-
mization problems. Droste, Jansen, Tinnefeld, and Wegener [13]
were the �rst to ask this question in the context of evolutionary
algorithms. In their seminal paper, see also [14], they introduced
the notion of black-box complexity as a measure of problem di�-
culty. In simple words, the black-box complexity of an optimization
problem is the expected number of function evaluations that are
performed by an optimal black-box algorithm until it evaluates an
optimum for the �rst time. As many randomized search heuristics
like evolutionary algorithms, ant colony optimization, or simulated
annealing are black-box optimizers, the black-box complexity of a
problem gives a lower bound on performance of all these search
heuristics.
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While dormant for several years, the area of black-box com-
plexity became very active from 2009 on, possibly incited by the
remarkable works [2] and [16]. Since then many deep and surpris-
ing results on black-box complexities were found, so that now we
reasonably well understand the black-box complexities of classic
test functions, e.g., Θ(n/logn) for OneMax [2, 14] or Θ(n log logn)
for LeadingOnes [1], and of several combinatorial optimization
problems like sorting, maximum clique and the single-source short-
est path problem [14], the minimum spanning tree problem [8],
and the partition problem [6]. It was also observed that modi�ed
de�nitions of black-box complexity are able to study the in�uence
of unbiasedness [17, 18], being ranking-based [11], memory size
[10], parallelism [3], and elitism [12].

2 OUR RESULTS
In this work, we stay within the realm of classic black-box complex-
ity of pseudo-Boolean functions, that is, we ask how many �tness
evaluations an otherwise unrestricted algorithm must perform to
�nd the optimum of a function f : {0, 1}n → R (given in a black-
box fashion) from a given problem class F . With the OneMax and
LeadingOnes classes as easy unimodal functions being studied,
we now turn to Jump functions. �ese are test functions of scalable
di�culty, because the �tness landscape has a large plateau of low
�tness around the optimum. For a jump function with jump size `,
this plateau consists of all search points x with Hamming distance
H (x , z) from the optimum z between 1 and `. More precisely, for
` ∈ [1..b n2 c − 1] and z ∈ {0, 1}n , we de�ne the jump function
Jumpn, `,z by

Jumpn, `,z (x) =


n if x = z

n − H (x , z) if ` < H (x , z) < n − `
0 otherwise

for all x ∈ {0, 1}n . �e class Jumpn, ` then consists of all function
Jumpn, `,z with z ∈ {0, 1}n .

Our motivation is both understanding the black-box complexity
of this well-studied function class and using it as a trigger to develop
new methods, in particular, for proving lower bounds for black-box
complexities, where at the moment not much is known beyond the
information theoretic argument of [14].

Jump functions tend to be di�cult for many randomized search
heuristics, e.g., the simple (1 + 1) EA needs Ω(n`+1) expected time
to �nd the optimum. We refer to [9] for the most recent review of
the state of the art. On the complexity theoretic side, surprisingly,
the unrestricted black-box complexity of these jump functions has
not been regarded so far. In contrast, a detailed investigation ex-
ists for the unbiased black-box complexity model [7]. Here, new
o�spring can only be created from applying unbiased variation
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operators to up to k previously found search points, where unbi-
ased means invariant under the automorphisms of the hypercube.
For unrestricted arity k = ∞, the unbiased black-box complexity is
Θ(n/logn) when ` ≤ (0.5 − ε)n, ε > 0 an arbitrary constant. In the
case of extreme jump functions for even n, that is ` = 0.5n − 1, the
unbiased black-box complexity is Θ(n). It is clear that these results
are valid for the unrestricted black-box complexity as well. Our
results, though, will be stronger in that they provide more precise
bounds and regard wider ranges of `.

A second black-box complexity result regards the unrestricted
black-box complexity, but of a di�erent type of jump functions
where (roughly speaking) the global optimum can be hidden on
an arbitrary location of the plateau. With this li�le structure, it
seems natural that there is no be�er algorithm than searching the
plateau in a random order, and this is exactly the result proven
in [15]. While this last result can be interpreted in the way that
the traditional de�nition of jump functions is less natural, we feel
that the long series of previous works still justi�es analyzing their
black-box complexity.

Our main technical result is a very precise determination of
the unrestricted black-box complexity of the jump function class
Jumpn, ` for almost all values of `: When the jump parameter ` satis-
�es ` < n

2 −
√
n log2 n, the black-box complexity satis�es the upper

bound of (1 + o(1)) 2n
log2 n

, which is also the best known bound for
the easy OneMax test function class. Note that ` = n

2 −
√
n log2 n

is actually quite large, meaning that all search points with distance
between 1 and n

2 −
√
n log2 n−1 from the optimum lie on the plateau

of low �tness, making this a plateau of size 2n(1−o(1)) and diameter
Θ(n). For even larger jump sizes n

2 −
√
n log2 n ≤ ` < bn/2c −ω(1),

we show an upper bound of (1 + o(1)) n
log2(n−2`) , where the asymp-

totic notation refers to n − 2` tending to in�nity. �is upper bound
does not make precise the leading constant when n− 2` is constant,
in particular, not for the extremal case when the jump function has
all �tness levels on the plateau except for the “middle level” (for
even n) or except for the two middle levels bn/2c and dn/2e (for odd
n). For such extreme jump functions (and thus also for all others),
we show an upper bound of n +O(

√
n).

�ese upper bounds are asymptotically of the right order of
magnitude. �is follows mostly from the information theoretic
argument (�eorem 2) in [14]: an optimization problem over a
search space S such that each element of S is the unique solution
to an instance of the problem has a black-box complexity of at
least dlogk |S |e − 1, where k is the maximum number of di�erent
�tness levels. For jump functions with jump size `, this gives a
lower bound of dlogn+1−2`(2n )e − 1 = (1+o(1))n/log2(n− 2`) with
the asymptotics being with respect to n − 2` tending to in�nity.
Consequently, for “small” `, say ` ≤ 0.49n, our upper and lower
bounds show the same factor-2 gap that is known from the OneMax
problem. �is gap shrinks with growing ` and for n/2−n0.5−o(1) ≤
` ≤ n/2−ω(1), our bounds are tight including the leading constant.
For constant values ofn−2`, we again see a substantial gap between
our upper bounds and the information theoretic lower bound. In
the case of an extreme jump function for even n, we have the three
di�erent �tness values 0,n/2, and n, and hence the lower bound is
log3(2) ·n. For odd n, we have the four �tness values 0, bn/2c, dn/2e,

and n, giving a lower bound of log4(2) ·n = 0.5n only. In both cases,
our upper bound is n + Θ(

√
n) and thus quite far away.

�e reason is that the information theoretic argument pretends
that at all times, all k answers may occur, and moreover, occur
with similar frequency. �is is o�en an overly optimistic view. To
overcome this weakness, we signi�cantly extend the information
theoretic bound to allow taking care of such reasons for a smaller
information gain, that is, to exploit these to prove stronger lower
bounds. Our matrix lower bound theorem gives improved lower
bounds for all black-box complexities of jump functions. In partic-
ular, for extreme jump functions, we raise the lower bounds from
log3(2) · n to n − 1 when n is even and from 0.5n to n − 2 when
n is odd. Note that the larger number of �tness values for n odd
now has a much smaller in�uence on the result. With a small extra
argument, we improve these bounds to n + Ω(

√
n), giving a bound

sharp up to the Θ(
√
n) term.

�e new lower bound methods triggered by this work, being
essentially the �rst progress on lower bounds for unrestricted black-
box complexities a�er the information-theoretic argument dating
back to 2003, are the main methodological contribution of this work.
We are optimistic that they can serve to give precise lower bounds
also for other black-box complexity problems.
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