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ABSTRACT
�e cardinality-constrained portfolio optimization problem is NP-
hard. Its Pareto front (or the E�cient Frontier - EF) is usually
calculated by stochastic algorithms, including EAs. However, in
certain cases the EF may be decomposed into a union of sub-EFs.
In this work we propose a systematic process of excluding sub-EFs
dominated by others, enabling us to calculate non-dominated sub-
EFs. We then calculate whole EFs to a high degree of accuracy for
small cardinalities, providing an alternative to EAs in those cases.
We can use also this to provide insight into EAs on the problem.
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1 INTRODUCTION
�e portfolio optimization problem [5] is an important one in �-
nance. Given the returns of several assets over a period of time, an
investor must decide in which proportions and in which assets to
invest. �e usual assumptions are that the investor wishes to maxi-
mize return and minimize risk within a given investment period.
�e Markowitz problem, i.e., no additional investment constraints
are imposed other than all proportions being non-negative and
summing to one, may be solved by quadratic programming (QP). To
more accurately re�ect real-world practice, additional constraints
are commonly imposed. �ese conditions include cardinality con-
straints (restricting the number of assets in which we may invest
from the set of all assets) and minimum proportions (if an asset
is bought then a minimum proportion must be bought). However,
addition of such constraints turns the problem into anNP-hard prob-
lem. In this work, we investigate the portfolio optimization problem
under a cardinality constraint. �at is, we invest in a “sub-portfolio”
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k of n assets, each asset having a proportion (weight)wi of our capi-
tal. Wewrite a portfolio as a vector of weightsw = (w1,w2, . . . ,wn )
with sum 1. Each w has a mean return R (from all returns in the
investment using those weights) and a risk r (usually the standard
deviation of returns). �e standard expression of this problem is as
a two-objective problem: we wish to minimize risk r subject to

R ≥ R0
n∑
i=1

wi = 1 (1)

wi ≥ 0 for i = 1, . . . ,n
#{j : w j , 0} ≤ k

Equivalently, mean returnsRmay bemaximized subject to r ≤ r0
where r0 is a given level of risk. Due to its NP-hardness, solving
this problem is commonly done via a stochastic or evolutionary
algorithm (EA) [3]. An EA is an optimizer which a�empts to mini-
mize or maximize one or more objectives related to a given problem.
Many problems have more than one objective and, through use of
parameterization or vectorization, may be converted to problems
with fewer objectives (although some information may be lost). In
this spirit, the portfolio problem under a cardinality constraint has
the above expression (1) but may be expressed as a single-objective
problem by substituting the objective with the following:

Minimize the function λr − (1 − λ)R for a param-
eter λ subject to the weight constraints of (1).

With respect to problem instances, we use instances (D1)–(D5)
of the benchmark OR-Library [1]. �ese are portfolio optimisation
problems using, respectively, 31, 85, 89, 98 and 225 assets.

�e Pareto front of (1) is referred to as the Cardinality Con-
strained E�cient Frontier (CCEF; see, e.g., Fig. 2). However, in the
1-objective case of the problem (parameterized by λ) the CCEF is
not contiguous but instead contains “gaps” due to the parameteri-
zation [3]. In the 2-objective case there are no such gaps (but such
CCEFs can be ragged). By de�nition, the CCEF contains all the
non-dominated sub-portfolios (vectors w with n − k weights being
zero such that if there are two portfolios w,w′ then w dominates
w′ if the EF for w′ is both below and to the right of that of w). In
the 2-objective case, the full CCEF may be produced by considering
optimal portfolios for R0 in the range of minimal to maximal re-
turn. �is, for one objective, is the �nding of optimal portfolios for
λ ∈ [0, 1]. Note that we do not compare runtimes with EAs in this
work, as the purpose is to provide a method �nding exact solutions
which may be used as benchmark optimal solutions for an EA.

2 SIEVING AND SUB-EFS
We re-arrange returns and covariance data in order of asset returns
(with highest returning asset corresponding to row / column 1).
Generate the EF for the sub-portfolio consisting of (renumbered) as-
sets 1, 2, . . . ,k . �en for each of the

(n
k
)
−1 remaining sub-portfolios,
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we test whether the EF to be generated by this sub-portfolio would
be dominated. We do this by calculating three points on a “test
EF” - one to give a maximum return Rmax (corresponding to λ = 0),
one to minimize the risk rmin (at λ = 1) and another point with
coordinate (rmin,Rmax). �e test EF is dominated if, for all three
points (ri ,Ri ) on the test EF, r j ≥ ri implies R j > Ri for every point
(r j ,R j ) on each previously computed non-dominated EF. If the test
EF is not dominated in this way, calculate and store the full EF for
this sub-portfolio (we use the Maple QP solver). �e points on the
non-dominated sub-EFs calculated for dataset (D1) of [1] are shown
as blue circles in Fig. 1. At the end of this process we pool all data
for the calculated sub-EFs. On the pooled data, we now perform a
sieving process to determine whether individual sub-EF points are
dominated. �e �nal CCEF is the set of all non-dominated points
(shown in orange in Fig. 1).

Figure 1: Sieved e�cient frontier composed of non-
dominated sub-portfolios for the (D1) dataset with k = 2.

Fig. 2 shows the CCEF generated by [2]. Comparing with Fig.
1, we see the �nal computed CCEF coincides perfectly with that
generated by the authors except for the low risk/return region of
the CCEF where our method slightly out-performs [2] by �nding
points whose risk is smaller than any of the points generated by
[2]. [Note, the raw CCEF generated by the authors is ragged in the
sense that it is non-monotonic and includes individual points which
are dominated by other points. �is is because the authors �x a
return level and then solve a single-objective problem to �nd the
minimum risk corresponding to that return. �e CCEF shown here
has used a si�ing process to remove all of the dominated points
and is monotonic; i.e., return increases with risk.]

Table 1 shows the number of non-CCEF-dominated EF’s found
for the OR-library datasets with sub-portfolios of various sizes.
In all cases, it is clear that the vast majority of sub-portfolios are
CCEF-dominated and full sub-EFs must be computed only for a
very small number of portfolios. �is means that cases where
the number of possible sub-portfolios is vast remain computable
within a reasonable time. For example, there are almost 8 million
sub-portfolios for the case (D1), k=8. Only four of these are non-
CCEF-dominated and computation was completed within a day.

3 RESULTS AND CONCLUSIONS
In [4] we a�empted to solve the 1-objective problem for the datasets
in [1] with an EA. As the problem is especially di�cult for small

values of k (e.g., k = 2 is the most di�cult) the EA runtime was
large. However, moderate values k ≥ 10 were solved e�ciently by
the EA. �e present work gives an alternative method for solving
the problem with a combined sieve-QP methodology. �e number
of combinations of k assets from n (i.e.

(n
k
)
) is small for small k

(Table 1, third column) and large for the same moderate k above.
�is illustrates a pleasing duality: the sieve-QP methodology may
be used for small k values while an EA may be used for other
k values. �e method is exact providing the QP procedure used
converges, and we have evidence that it is also e�ective for distinct
risk measures (in which case a non-QP solver may be necessary).

Figure 2: Sieved CCEF of [2] for the instance of Fig. 1.

�e analysis of generated CCEFs and dominated portfolios drives
insight into EA processes. Our computations suggest that the sub-
EFs are local minima of the cost function of common EAs on the
problem, i.e., an EA picks out the sub-optimal sub-EFs discarded
by the above procedure through cost minimisation (a�empting
to move to sub-EFs, i.e., solutions, closer to the CCEF). We shall
investigate this further.
Table 1: �e number of sub-portfolios and non-dominated
sub-EFs for various k for each dataset in [1].

Dataset k # Sub-portfolios # Non-Dom. Sub-EFs

D1

2 465 8
4 31465 7
6 736281 6
8 7888725 4

D2 2 3570 7
4 2024785 6

D3 2 3916 5
4 2441616 6

D4 2 4753 10
4 3612280 9

D5 2 25200 7
3 1873200 17
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