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ABSTRACT
In this paper, we utilize a multi-objective genetic algorithm (GA) to
investigate the Iterated Prisoner’s Dilemma problem with a pop-
ulation of players that don’t have uniform objectives. Each of the
members of our population has one of four objective pairs. We sim-
ulate a tournament similar to those in previous work to investigate
pa�erns of convergence in objective pairs when they are free to
change. We also consider the most successful objective pair within
a population when members’ objective pairs are �xed.
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1 INTRODUCTION
Academic ethicists o�en make the assumption that all people desire
to be good. Evil occurs when there is a con�ict of “good” decisions,
when a good decision for one contradicts the good of another. In
this case, a person makes a decision depending on the “good” they
want to accomplish. In a society that starts with equal numbers
of “sel�shly good”, “communally good”, “cooperatively good”, and
“sel�essly good” members, we investigate the convergence pa�erns
and discover their causes through simulation of populations play-
ing the Iterated Prisoner’s Dilemma (IPD) over time. Additionally,
we investigate the measures of success and which member of the
population is most successful (in terms of its objectives) in Leave-
One-Out testing against Axelrod’s population [1].

�e typical motivation for evolving cooperation in IPD is Mutu-
ally Assured Destruction, the Cold War policy. �e motivation for
our work lies instead in applications involving cooperation, speci�-
cally related to national policy. Consider environmental regulation.
Some countries may be in a be�er position to take on the initial
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burdens of becoming more environmentally friendly. However,
such countries may not want to be the �rst to make the sacri�ces
required, sel�essly paying for the bene�t of all. Parties in complex
scenarios such as these may have di�ering goals. We �nd no work
that has approached IPD using GAs with non-uniform objectives.

2 PREVIOUS WORK
Our work is inspired by that of Mi�al and Deb [7]. We use their
genome and their probabilities of crossover and mutation, to allow
comparison of results. Mi�al and Deb [7] use a multiobjective GA
to evolve an optimal strategy for maximizing personal score and
minimizing opponent’s score, running against Axelrod’s popula-
tion [1]. We use this framework, and NSGA-II [3], to expand on
their results. Some previous results [2] describe a�empts to apply
Iterated Prisoner’s Dilemma to real world problems, such as missile
defense, but do so using only one objective. Coevolution [6] has
also been used in an a�empt to improve an evolved solution to IPD.
Coevolution with random sampling has been applied to Othello [4].
A degree of dynamism has been used in allowing �tness functions
to evolve [5]. While we keep �tness functions static, we allow
members to change their objectives in some of our experiments.

aaaaaa
P1

P2 Cooperate Defect

Cooperate 3 : 3 0 : 5
Defect 5 : 0 1 : 1

Table 1: Scoring for the version of IPD in this work.

3 IMPLEMENTATION DETAILS
We simulate a population of 60 members, each having one of four
objective pairs. Each pair is comprised of two of the following
objectives: maximize personal score, minimize opponent’s score,
maximize opponent’s score, and maximize cooperation. Some com-
binations of these objectives do not make sense, such as maximizing
and minimizing opponent’s score simultaneously. Due to such con-
tradictions, we propose the objective pairs shown in Table 3.

�e genome contains 70 bits. We use 0, 1 to represent cooperation
and defection, respectively. Bits 0-63 determine the next decision
based on the history of the past three moves. Six history bits, in
positions 64-69, store the outcomes of the past three rounds in the
form of the opponent’s decision and personal decision for each.
�e next decision made by a player is determined by indexing into
bits 0-63 based on the binary number represented by the six history
bits.
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Objective Value
Max Own Sum of own rewards
Min Opp Additive inverse of sum of opponent rewards
Max Opp Sum of opponent rewards
Max Co-op Count of mutual co-op ∗ scaling factor

Table 2: Fitness values are divided by number of rounds played. �e scaling
factor for cooperation allows comparison with other objectives.

Name Max Own Min Opp Max Opp Max Co-op
Sel�sh • •

Communal • •

Cooperative • •

Sel�ess • •

Table 3: Objective pairs used in experiments reported.

Figure 1: Our sel�ess LOO results vs Mittal’s results per round.

Figure 2: Distribution for objective pairs against Axelrod’s population.

4 RESULTS
We �rst simulate our population playing IPD for 150 rounds against
other members of the population. We repeat experiments both
with �xed objective pairs to see which members of the population
succeeded, as well as free objective pairs to see if there is a pa�ern
of convergence to an objective pair. We are able to extract learned
decisions by evaluating trends in repeated experiments. Figure 2
shows an example of the objectives of a population graphed against

Figure 3: Scores for best of each LOO trial against Axelrod’s 16th player.
�e best player in each trial doesn’t always have the same objective pair.

each other. In another set of experiments, we perform Leave-One-
Out testing in which we train a population on 15 of the 16 members
of Axelrod’s population [1] and test our best player on the 16th
member to evaluate robustness of the results. An example of the
Leave-One-Out testing results is depicted in Figure 3.

5 CONCLUSIONS
In experiments in which members are permi�ed to change ob-
jectives, there is typically a convergence to one or two objective
pairs that thrive. When two pairs �ourish, they typically comple-
ment each other (ex. sel�ess and communally good players.) In
Leave-One-Out testing, we conclude that members do learn spe-
ci�c pa�erns of behavior and that our sel�ess player is typically
the most “successful,” in terms of its own objectives, against the
members of Axelrod’s population. We are able to extract common
pa�erns of decisions given a speci�c history of the past three moves.
With developing foreign policy in mind, our model suggests that
cooperating with other nations is a�ainable, and once cooperation
starts to take place, other nations will follow suit.
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