
Evaluating Island-based EAs on Unstable Networks with
Complex Failure Patterns

Late-breaking Abstract

Rafael Nogueras
Universidad de Málaga

ETSI Informática, Campus de Teatinos
Málaga, Spain 29071

rafael.nogueras@gmail.com

Carlos Cotta∗
Universidad de Málaga

ETSI Informática, Campus de Teatinos
Málaga, Spain 29071
ccottap@lcc.uma.es

ABSTRACT
The performance of island-based evolutionary algorithms is studied
on unstable networks whose nodes exhibit complex correlated
failures. Simple EAs have a significant performance degradation
with respect to networks with uncorrelated failures, but the use
of self-⋆ properties allows the EA to increase its resilience in this
scenario.
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1 INTRODUCTION
Recent times have witnessed an increasing interest in the use of
EAs in novel computational scenarios such as cloud computing (a
paradigm that provides computing resources on demand), P2P net-
works (where interconnected computers share computing resources
in a non-centralized way), or volunteer computing (in which com-
puters donate computing resources when are idle), just to cite a
few. A common theme in some of these scenarios is the dynamic
nature of the underlying computational substrate (e.g., consider
a P2P network in which nodes enter or leave the system subject
to external factors). A sensible solution to this issue may be to
construct intermediate layers to hide this dynamicity. However,
such a solution is not exempt of difficulties, in particular if the com-
putational substrate is composed of many low-power nodes just
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providing brief, ephemeral bursts of computation [2]. The alterna-
tive is making the algorithm cognizant of the volatile environment,
reacting and self-adapting to the fluctuations in the computational
substrate. Fortunately, EAs are resilient techniques that can with-
stand to some extent the sudden loss of part of the population [5],
even more so if endowed with self-⋆ properties [1]. Recent work
has precisely studied the use of self-scaling [7] and self-healing
[6] techniques in this context, and shown that the robustness of
the algorithm is notably improved. Previous studies have however
only considered simple network models in which each node has its
own dynamics, independent of the rest of the network. We consider
here a more general situation in which the availability sequence
of computing nodes is not independent of other nodes, but follows
complex correlation patterns [4], thus putting to test the robustness
and resilience of the EA, and providing a broader perspective on
the usefulness of self-⋆mechanisms to cope with computational
instability.

2 ALGORITHMIC SETTING
We consider an island-based EA running on a simulated unstable
environment. Each island runs on a computational node of the
system, whose topology is that of a scale-free network (as it is
often the case in P2P networks). These nodes are volatile, and may
abandon the system and re-enter it at a later time, over and over
again. To model this instability we consider two scenarios:

• independent failures: each node can switch from active
to inactive or vice versa independently of other nodes,
after a fixed number of micro-failure events taking place
with some probability p(t) that depends on the time it has
been in its current state. Following previous work and the
commonly observed behavior of these systems [8], p(t) is
assumed to follow a Weibull distribution.

• correlated failures: node failures will be influenced by
neighboring nodes [4]. This can be accomplished in differ-
ent ways. In this work we have considered a variant of the
sandpile model in order to induce cascading failures [3].
Much like in the previous case, we consider micro-failure
events happening on each node with a certain probability
p(t). When the number of such micro-failures equals the
number of active neighbors of a node, it is disconnected
from the system, and each of these active neighbors re-
ceives an additional micro-failure event (which can in turn
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Figure 1: Average deviation from the optimal solution for each algorithmic variant and network failure model. (a) Trap func-
tion (b) HIFF function (c) MMDP function

produce node disconnections in cascade). As to node re-
activation, a single event is required (identically to the
independent scenario).

Two variants of the island-based EA are considered: (i) a basic one
(termed noB) in which every island has a fixed size and random
reinitialization is used whenever a new node enters the system, and
(ii) a self-⋆EA (termed LBQ) that uses self-scaling and self-sampling
to re-size each island individually in response to fluctuations in the
number of active neighbors and in the population sizes of these –
see [6] for details.

3 EXPERIMENTAL RESULTS
The experiments have been done with an island-based EA com-
posed of nι = 64 islands of µ = 32 individuals initially. Each island
runs a basic steady-state EA using one-point crossover (pX = 1.0),
bit-flip mutation (pm = 1/ℓ, where ℓ is the genotype length), tour-
nament selection, replacement of the worst parent and migration of
randomly selected individuals with probability pmig = 1/(5µ). We
consider micro-failures distributed according to a Weibull distribu-
tion with shape parameter η = 1.5 and different scale parameters
controlled by an external parameter k ∈ {1, 2, 5, 10, 20} that takes
values from 1 (very high volatility) to 20 (very low volatility). Three
test problems are used, a trap function (32 traps of 4 bits), the hierar-
chical if-and-only-if function (HIFF with 128 bits) and the massively
multimodal deceptive problem (MMDP with 24 blocks of 6 bits).

Figure 1 shows the results. Increasingly volatile scenarios are
found to the right of the X-axis and, obviously, higher degradation
of the results. Not all algorithms degrade at the same rate though:
noB is very affected by these correlated failures, and has a marked
degradation profile as instability increases; on the contrary, LBQ is
much more resilient. A statistical analysis (ranksum test, α = 0.05)
indicates the performance of LBQ is significantly reduced in the
presence of correlated failures only for k ⩽ 1 (trap), 10 ⩾ k , 2
(HIFF) and k ⩽ 5 (MMDP), whereas noB exhibits significantly
degraded performance with respect to the uncorrelated scenario
for all values of k except k = 20 (for trap and MMDP) and k ⩾ 10
(for HIFF). Furthermore, LBQ is superior in both scenarios to its

noB counterpart for all test problems and for all values of k , except
k = 20 for trap and k = 10 for HIFF in the correlated scenario.

4 CONCLUSIONS
Correlated failures pose a hard challenge to island-based EAs. Self-
⋆ properties seem to be essential to boost the resilience of the
algorithm in such scenarios. We are currently working on other
models of correlated failures and network types in order to confirm
these findings and analyze more in depth the effect they cause in
the search process.

ACKNOWLEDGMENTS
This work is supported by the Spanish Ministerio de Economía
and European FEDER under Project EphemeCH (TIN2014-56494-
C4-1-P) (http://ephemech.wordpress.com), and by Universidad de
Málaga, Campus de Excelencia Internacional Andalucía Tech.

REFERENCES
[1] Ö. Babaoğlu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi, A. van Moorsel,

and M. van Steen (Eds.). 2005. Self-star Properties in Complex Information Sys-
tems. Lecture Notes in Computer Science, Vol. 3460. Springer-Verlag, Berlin
Heidelberg.

[2] C. Cotta, A. J. Fernández-Leiva, F. Fernández de Vega, F. Chávez, J. J. Merelo,
P. A. Castillo, G. Bello, and D. Camacho. 2015. Ephemeral Computing and Bioin-
spired Optimization - Challenges and Opportunities. In 7th International Joint
Conference on Evolutionary Computation Theory and Applications. SCITEPRESS,
Lisboa, Portugal, 319–324.

[3] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. 2008. Critical phenomena
in complex networks. Rev. Mod. Phys. 80 (Oct 2008), 1275–1335. Issue 4.

[4] Z. Kong and E. M. Yeh. 2012. Correlated and cascading node failures in random
geometric networks: A percolation view. In 2012 Fourth International Conference
on Ubiquitous and Future Networks (ICUFN). IEEE, Phuket, Thailand, 520–525.

[5] D. Lombraña González, J.L. Jiménez Laredo, F. Fernández de Vega, and J. J.
Merelo Guervós. 2012. Characterizing fault-tolerance in evolutionary algorithms.
In Parallel Architectures and Bioinspired Algorithms, F. Fernández de Vega and
others (Eds.). Studies in Computational Intelligence, Vol. 415. Springer-Verlag,
Berlin Heidelberg, 77–99.

[6] R. Nogueras and C. Cotta. 2016. Self-Healing Strategies for Memetic Algorithms
in Unstable and Ephemeral Computational Environments. Natural Computing
(2016), 1–12. DOI:https://doi.org/10.1007/s11047-016-9560-7

[7] R. Nogueras and C. Cotta. 2016. Studying Self-balancing Strategies in Island-
based Multimemetic Algorithms. J. Comput. Appl. Math. 293 (2016), 180–191.

[8] D. Stutzbach and R. Rejaie. 2006. Understanding churn in peer-to-peer networks.
In 6th ACM SIGCOMM Conference on Internet Measurement - IMC 2006. ACM
Press, New York, NY, USA, 189–202.

40

http://ephemech.wordpress.com
https://doi.org/10.1007/s11047-016-9560-7

	Abstract
	1 Introduction
	2 Algorithmic Setting
	3 Experimental Results
	4 Conclusions
	Acknowledgments
	References

