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ABSTRACT
Many-objective optimization is steadily gaining importance in the
�eld of automated drug design involving simultaneous optimization
of several physiochemical and biological properties. Pareto-based
MOEAs slow down in convergence as the classi�cation of the solu-
tions’ quality according to the Pareto dominance principle becomes
increasingly undi�erentiated with the rise of objectives. �is re-
search addresses the enhancement of a MOEA for drug design with
the aim of solving many-objective molecular optimization prob-
lems. For this purpose, a sophisticated selection concept is designed.
�is selection strategy is front-based, but the Pareto dominance
principle is applied to a two-dimensional indicator problem and not
directly to the optimization problem. �e �rst indicator re�ects the
solutions’ quality with regard to the objective values and the second
indicator refers to the general aspect in molecular optimization -
the genetic dissimilarity among the solutions in a population. First
experiments reveal that this selection strategy is able to identify a
selected number of improved molecules within 10 generations for
a 3D- and 4D-molecular optimization problem.
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1 INTRODUCTION
Many-objective Optimization Problems (MaOPs) are de�ned as
Multi-objective Optimization Problems (MOPs) with more than
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three objectives. MaOPs arise out of real world applications and
pose a challenge for MOEAs in both targets, convergence and di-
versity. Pareto-based MOEAs have di�culties to solve MaOPs due
to their inability to classify the quality of solutions by the Pareto
dominance principle. Furthermore, the de�nition of diversity is less
straightforward to reformulate in MaOPs.[4]

Di�erent approaches ofMany-objective EvolutionaryAlgorithms
(MaOEAs) have been evolved in the past addressing the challenge
of convergence and diversity by methods of objective reduction,
incorporation and preferences, modi�ed dominance de�nitions and
the introduction of additional selection criteria. An overview of
these algorithms is given in [1].

A MOEA for molecular optimization, referred to as COSEA-MO,
has been recently reported in [3] identifying a selected number
of highly quali�ed molecules within a very low number of gen-
erations. COSEA-MO is evolved to complement an in vitro drug
design process as a computer-assisted system to identify a selected
number of improved molecules providing a wide range of genetic
diversity within a very low iteration number for an e�cient lab-
oratory examination. Dynamic deterministic variation operators
are used in COSEA-MO and a mating pool of the old population
and the o�spring is generated a�er variation. A combination of
�tness-proportionate and indicator-based selection determines the
individuals of the succeeding generation. As the selection strategy
is partly Pareto front-based, a more sophisticated selection strategy
is required, which is target-oriented to many-objective molecular
optimization. �e selection strategy presented in the following
applies the Pareto dominance not directly to the optimization prob-
lem, but to a two-dimensional indicator problem covering the two
generic aspects of molecular optimization problems: �rstly, an in-
dicator for the quality of the molecules; secondly, an indicator for
the genetic dissimilarity of a molecule with regard to the current
population. �is selection concept is introduced in the following
and the performance of COSEA-MO with the traditional and the
sophisticated selection strategy, further termed nCOSEA-MO, are
compared for a 3D- and 4D-molecular optimization problem as
presented in [3].

2 CONCEPT OF SELECTION STRATEGY
A MaOP is given by f : P −→ Rm , p −→ ( f1 (p), f2 (p), ..., fm (p)),
whereby m > 3 is the number of objective molecular functions
fi which have to be minimized, and P is the quantity of feasi-
ble molecules. �e procedure of the novel selection strategy is
described in Algorithm1. �e strategy is ranked and binary tourna-
ment based. �e Pareto principle used for ranking is not directly
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applied on the objective values but on a two-dimensional indicator-
based minimization problem (line 4). �e �rst indicator re�ects the
solutions’ quality by the calculation of the Lp -norm of the objective
values to a reference point (line 2), which is determined by the
minimum of each objective provided by the population members
(line 1). �erefore, this reference point varies with the population.
�e second indicator refers to the general aspect of maintaining
a high genetic dissimilarity within the populations. Needleman
Wunsch Algorithm (NMW) [2] is chosen as global sequence align-
ment (line 3). �e N -best individuals are selected in the succeeding

Algorithm 1: Pseudo code of the selection strategy
Input: Current population Pt with |Pt | = 2N , Pt+1 = {}
Calculation of the two indicator values for each solution:
1: fmin := (mini1 f1 (pi1 ),mini2 f2 (pi2 ), ...,minim fm (pim )) ;
2: ∀p ∈ Pt : fLp−norm (p) = Lp ( f (p), fmin );
3: ∀p ∈ Pt : diss (p) = 1

|Pt |
∑

p∈Pt
SequenceAliдnment (p, Pt − p);

Selection process:
4: Ranking of Pt according to ( fLp−norm ,diss ) into fronts Fi ;
5: while |Pt+1 | + |Fi | < N do

Pt+1 = Pt+1 ∪ Fi ; i++;
end
6: binary tournament selection: while |Pt+1 | < N do

select p1,p2 ∈ Pt \ {Pt+1}:
if ( fLp (p1) ∗diss (p1) < fLp (p2) ∗diss (p2)) add p1 to Pt+1 ;
else add p2 to Pt+1;

end

generation based on the rank (line 5) and the volume dominance
principle via binary tournament selection (line 6).

3 EXPERIMENTS
�e performances of COSEA-MO and nCOSEA-MO are compared
for a 3D- and 4D-molecular minimization problem [3]. Molecular
weight, average hydrophilicity and NMW as a similarity score to a
prede�ned reference peptide are the 3D-MOP. �e addition of the
Instability Index to the 3D-MOP becomes the 4D-MaOP. �e test
runs are performedwith a population size of 100, 20-mer peptides as
individuals, L2-norm and 10 generations repeated for 30 times. �e
approximate Pareto optimal sets (PFs) of COSEA-MO and nCOSEA-
MO in each generation are compared in terms of the established C-
metric: C (PF1, PF2) :=| {b ∈ PF2 | ∃a ∈ PF1 : a � b} | / | PF2 |. PF
of COSEA-MO is determined according to the molecular optimiza-
tion problem, whereas PF of COSEA-MO is determined according
to the two-dimensional indicator problem. �e C-metric values are
determined according to the objective values as usual. Table 1 and 2
depict the C-metric values C1 = C(COSEA-MO, nCOSEA-MO) and
C2 =C(nCOSEA-MO, COSEA-MO) for the 3D- and 4D-molecular
optimization problem. In general, the C-metric values of the PF of
nCOSEA-MO are signi�cantly higher than those of COSEA-MO,
thus revealing that more candidate solutions identi�ed by nCOSEA-
MO weakly dominate the solutions of COSEA-MO than vice versa
within each generation. Figure 1 gives an insight into the number
of approximate Pareto optimal solutions identi�ed in the test runs.

Figure 1: Number of candidate solutions

nCOSEA-MO provides a signi�cantly lower but stable number of
candidate solutions, whereas the solutions number of COSEA-MO
is generally higher and increases with the problem dimension as a
consequence of the Pareto dominance principle being directly ap-
plied to the objective values. Consequently, nCOSEA-MO provides
a selected number of improved molecules compared to COSEA-MO.

Table 1: C-metric values for 3D-MaOP
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.5 0.3 0.25 0.4 0.25 0.24 0.2 0.17 0.2 0.2
C2 0.9 1 0.93 1 0.79 0.78 0.9 0.86 0.95 0.9

Table 2: C-metric values for 4D-MaOP
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

C1 0.4 0.3 0.4 0.4 0.35 0.31 0.4 0.26 0.3 0.25
C2 0.7 0.5 0.6 0.7 0.57 0.64 0.7 0.79 0.84 0.82

4 CONCLUSION
�e concept of a selection procedure which applies the Pareto
dominance principle on a multi-dimensional indicator-based opti-
mization problem has a high potential to be established in multi-
and many-objective optimizations. Future work is intended in di-
rection of high-dimensional molecular optimization problems with
up to ten objectives. Furthermore, this concept will be applied in
established benchmark problems with indicators referring to the
general targets of convergence, diversity and uniformity.
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