
Solving a Large Sudoku by Co-evolving Numerals
Je�rey Horn

Northern Michigan University
1401 Presque Isle Avenue, Marque�e, MI 49855 USA

www: euclid.nmu.edu/˜je�orn
jhorn@nmu.edu

CCS CONCEPTS
•Computing methodologies→ Bio-inspired approaches; Ge-
netic algorithms; •�eory of computation → Evolutionary
algorithms; Self-organization; •Mathematics of computing→
Combinatorial optimization;

KEYWORDS
genetic algorithm, evolutionary algorithm, evolutionary compu-
tation, coevolution, cooperative coevolution, niching, niches, spe-
ciation, species, sharing, �tness sharing, resource-de�ned �tness
sharing, exact cover, Sudoku
ACM Reference format:
Je�rey Horn. 2017. Solving a Large Sudoku by Co-evolving Numerals. In
Proceedings of GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017,
2 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082050

1 INTRODUCTION
Recently we introduced an approach to solving Sudoku problems
with co-evolution [4]: Resource-de�ned Fitness Sharing for Sudoku
(RFSS). �e idea is to �nd a set of non-con�icting numerals such that
every cell in the puzzle is “covered” by a numeral. Each numeral
is a species, and species that don’t compete (i.e., don’t con�ict,
according to the rules of Sudoku) are cooperating. Using a well-
known co-evolution algorithm, �tness sharing, we were able to
co-evolve numerals to solve a large number of example puzzles.
�e algorithm is deterministic; there is no discovery operator such
as crossover or mutation. It consists solely of selection on shared
�tnesses. It assumes no knowledge of the domain, no strategies or
heuristics for Sudoku, but only the basic rules. �e algorithm is
general enough to work on any exact cover problem.

In [4] we only looked at the common 9x9 Sudoku puzzle. We
have found few heuristic approaches to puzzles larger than 9x9,
and we have found no evolutionary approaches to any Sudokus
other than 9x9 (and 4x4). We are interested here in whether RFSS
can scale to larger Sudoku sizes, such as 16x16, 25x25, 36x36, etc.,
as the general case of NxN Sudoku is in NP-complete.

Resource-de�ned Fitness Sharing (RFS) [1], is aimed at the general
problem of covering a set of resources with multiple, cooperating
(non-competing) species. RFS works by applying proportionate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082050

selection to the shared �tnesses [2] of species in the population. �e
shared �tness calculation implements simple co-evolution by re-
ducing the �tness of species in proportion to the amount of overlap
they have with other species. Speci�cally, let px be the proportion
of the population P occupied by species x . Let S be the set of unique
species (i.e., chromosomes) in P , so that x ∈ S . Let y vary over S so
that

∑
y∈S py = 1. We can express the shared �tness of a species x

as fsh (x) = (
∑
y∈S py ∗ fx,y)

−1, where fx,y is the pairwise overlap
in “coverage” between species x and y. �e denominator of fsh (x),
known as the niche count for x , is the cumulative pairwise overlap
between x and other species in S , thus simulating sharing of �nite
resources.

Figure 1: Sudoku terms illustrated by the 9x9 puzzle grid.

In a NxN Sudoku grid there are N rows and N columns of cells,
each of which must contain exactly one of the numerals 1..N for
a puzzle to be solved. �e grid is further divided into N regions
of
√
N by

√
N cells. Each region also must contain exactly one of

each numeral 1..N in a solved puzzle. Here we use the 9x9 grid in
Figure 1 to illustrate the terms.

In [4] we cast Sudoku as a resource covering problem in which
a solution to the puzzle forms an exact cover of the resources, and
vice versa. �e constraints are implemented as resources. For
example (switching to the 25x25 size grid of Figure 2 to illustrate)
every row must have exactly one instance of each numeral 1–25.
So there are twenty �ve row resources per row, e.g., placing a “5”
in row 8 covers one resource, while placing a “6” in row 8 covers
a di�erent resource, and a “5” in row 7 is yet another resource.
�us there are 25 ∗ 25 = 625 “row resources.” Similarly there are
another 625 “column resources,” and other 625 “region resources.”
(Note that Figure 2 shows 25 regions of 5x5 cells square.) Finally,
there is a fourth category of resources corresponding to each of
the 625 cells: there must be a numeral placed into each cell. �us
there are 625 “cell resources” to be covered. �ere are a total of
625 + 625 + 625 + 625 = 2500 unique resources to be covered, but
clues will eliminate many of these.

�e species are placements of numerals into particular cells.
�us one unique species is “numeral 14 in row 3, column 8” (which

29

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Je�rey Horn

− 2 − − − 3 14 − 8 − − − − − − − − 13 4 24 − 7 1 − −
− 10 17 − − − 6 18 − − 22 16 − 12 − − − − 1 − − − 13 19 −
− 15 24 13 7 − − − 4 − 10 − − 3 14 − 18 − − − − 22 2 6 −
− − 1 21 − − 15 − 22 − − 19 13 − − − 8 − − − − 16 18 20 −
− 5 − − 20 7 25 19 − − − 21 17 18 2 10 12 22 9 15 11 − − − −
11 − − − 22 8 − 24 7 1 5 − − − 13 16 17 25 23 2 4 − 6 − 19
16 9 12 − 17 − 19 22 − − − − 18 21 − − 20 6 13 − 7 − − 23 11
− − 6 − 21 9 16 − 3 − − 22 20 19 − − − − 15 8 25 − − − −
− − 23 5 − 2 − − 11 17 8 − − − 16 12 9 − − 21 − 3 10 − −
− − − − − 6 − − 12 − 9 1 25 − 3 − 11 − − 7 − − 21 − −
− − 9 − − 23 − 5 17 4 16 − 11 − 22 18 2 − 21 13 − − 7 − −
4 6 − − 5 − − 2 − − − 18 21 24 − − 19 3 − 12 23 − − 17 −
− − − 12 11 − 7 3 − 24 17 20 15 13 19 1 − 5 8 − 6 9 − − −
− 22 − − 14 19 − 6 16 − − 8 9 7 − − − 24 − − 3 − − 1 18
− − 21 − − 25 13 − 20 8 12 − 14 − 10 9 16 15 − 6 − − 4 − −
− − 25 − − 24 − − 18 − 4 − 3 10 5 − 1 − − 14 − − − − −
− − 5 3 − 17 − − 23 7 13 − − − 18 19 21 − − 22 − 11 12 − −
− − − − 18 10 8 − − − − 25 23 2 − − 5 − 16 11 9 − 3 − −
17 20 − − 2 − 22 16 6 − − 7 12 − − − − 9 3 − 18 − 23 24 25
6 − 4 − 16 1 11 12 25 3 19 − − − 21 17 23 8 − 18 2 − − − 14
− − − − 4 14 24 11 19 23 21 17 16 8 − − − 1 2 9 13 − − 5 −
− 1 14 23 − − − − 9 − − − 19 5 − − 24 − 12 − − 8 17 − −
− 16 11 8 − − − − 1 − 6 4 − − 23 − 15 − − − 14 12 9 10 −
− 21 3 − − − 17 − − − − 15 − 25 20 − − 4 10 − − − 16 11 −
− − 20 2 − 16 5 8 − − − − − − − − 6 − 19 25 − − − 3 −

Figure 2: Sudoku puzzle 25x25.

might be encoded on a chromosome as 〈14, 3, 8〉). Such a species
would cover four resources: a row resource for placing a “14” in
row 3, a column resource for placing a “14” in column 8, a region
resource for placing a “14” in region (1,2), and a cell resource for
placing a numeral in cell (3,8). Since every species covers exactly
four resources, we assign a credit of 1

4 for covering one resource.
(In a puzzle with no clues there are 25 ∗ 25 ∗ 25 = 15, 625 species,
one for each combination of row, column, numeral.)

Next we need a computation for species overlap, that is, the size
of the intersection of two sets of resources covered by two species
x and y: fx,y :

fx,y =


0
+1/4 iff SameCell(x, y)
+1/4 iff SameNumeral(x, y) ∧ SameRow(x, y)
+1/4 iff SameNumeral(x, y) ∧ SameColumn(x, y)
+1/4 iff SameNumeral(x, y) ∧ SameRegion(x, y).

(1)

where “SameCell(x,y)” returns true if species x and y specify the
same row and column and returns false otherwise, “SameNu-
meral(x,y)” returns true if species x andy specify the same numeral,
etc. Note that fx,y ∈ [0..1], where fx,x = 1 (a species completely
overlaps with itself) and fx,y = 0 (if species x and y have no over-
lap). For example if species x = 〈14, 3, 8〉 and species y = 〈22, 6, 1〉
then fx,y = 0 (di�erent numerals, di�erent cells). As another ex-
ample, f 〈18,11,22〉, 〈18,11,23〉 =

1
2 , since both species place the same

numeral, 18, in the same row and the same region (third region-row
down, ��h region-column from the le�), but in di�erent columns
and di�erent cells.

For the initial set of species S we start with all 15,625 possible
numeral placements, eliminate all those that are identical to the k
clues of the given Sudoku puzzle, and eliminate any species that
con�ict with the clues. �is last step shrinks the population con-
siderably (typically down to 1000-2000 species) as many species
con�ict with the clues.

2 RESULTS
Here we present a run of RFSS on a 25x25 Sudoku from the in-
ternet [3], shown in Figure 2. �e puzzle has 301 clues, leaving
625−301 = 324 unknowns (i.e., the dashes, or hyphens, in Figure 2).
�e clues eliminate 13,922 of the possible 15,625 species, leaving
1703 competing species for the evolution. Each species starts o� with
an initial population proportion of 1

1703 , indicated by the horizontal
do�ed line in Figure 3. �is �gure plots the evolution of the popula-
tion over 750,000 generations (species proportions are plo�ed every
10000 generations) during which the proportions diverge. Although
it takes over 700,000 generations, there is a clear partitioning of the
species into two groups. �e upper group numbers 324 species and
does indeed form a solution to the puzzle.

Figure 3: RFSS for 750,000 gen.s on the 25x25.

3 CONCLUSION
�is one run of RFSS on a single 25x25 Sudoku puzzle shows that
it can �nd a solution to a large Sudoku problem, but it is not clear
how di�cult this problem is. For the larger Sudokus there are few
example puzzles to be found, let alone tools, techniques, or consen-
sus on how to rate their di�culty. For many Sudoku enthusiasts
it is the sheer size of the puzzles that provides the most obvious
increase in di�culty. And that is precisely why the result shown
here is intriguing to the author: the algorithm seems able to cope
with interactions among >1000 species. But clearly more problems
at di�erent size levels need to be run.

References

[1] Horn, J.: Resource-based �tness sharing. In: J.J. Merelo Guervós, et. al. (ed.s)
Parallel Problem Solving From Nature – PPSN VII, Lecture Notes in Computer
Science, Vol. 2439, pp. 381–390. Granada, Spain, Springer-Verlag, Berlin, Germany.
(2002).

[2] Goldberg, D. E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: JJ. Grefenste�e (ed.) Proceedings of the Second In-
ternational Conference on Genetic Algorithms – ICGA2, pp. 41–49. Lawrence
Erlbaum Associates. (1987).

[3] h�p://www.puzzle-magazine.com/25x25-Sudoku-magazine.php
[4] Horn, J.: Co-evolution of Sudoku solutions. In: M. Adek (ed.) 20th International

Conference on So� Computing – MENDEL 2014, pp. 117–122. (ISSN 1803-3814,
ISBN 978-80-214-4984-8) Brno, Czech Republic. (2014).

30

	1 Introduction
	2 Results
	3 CONCLUSION
	References

