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ABSTRACT
Proteins are in perpetual motion, switching between structures to
regulate interactions with molecular partners. �ese motions corre-
spond to hops in an energy landscape that organizes the structures
available to a protein by their potential energies. Here we introduce
an evolutionary algorithm (EA) that computes structural excursions
of a protein without the need to reconstruct its energy landscape a
priori. �e preliminary results are promising and suggest further
directions of research.
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1 INTRODUCTION
Protein modeling research aims to uncover the functionally-relevant
structural excursions that a protein employs to tune its biological
function. One direction of in-silico work involves �rst reconstruct-
ing energy landscapes (o�en with powerful memetic EAs [4, 5]) and
then exploiting graph-based representations of such landscapes to
answer path queries corresponding to structural excursions of inter-
est. �is direction has revealed key insights on many proteins [3]
but has a large computational footprint due to the need to construct
comprehensive and detailed representations of energy landscapes
that are vast and high-dimensional [1, 2].

Here we explore a di�erent direction. We propose an EA that
computes paths without �rst reconstructing an energy landscape.
�e EA evolves a population of paths directly, exploits experimentally-
known structures in its initialization, and uses novel selection and
crossover operators. �is path-evolving EA reproduces known
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structural excursions of a protein and its disease variants with a
much smaller computational budget. �e obtained paths are re-
alistic and have �ne granularity. �e preliminary results suggest
path-evolving EAs warrant further a�ention. Section 2 relates the
salient ingredients of our EA. Section 3 showcases some preliminary
results. �e paper concludes in Section 4.

2 METHODS
Key building blocks in the path-evolving EA have been developed
and analyzed in prior work [3–5]. �ey include exploiting known
structures of a protein (of healthy and diseased sequence variants)
to extract a lower-dimensional variable space for exploration. Un-
like prior work, where an EA evolves individuals in this variable
space, starting from a collection of individuals (points) correspond-
ing to known structures, the new EA evolves paths utilizing only
two given (experimentally-known) structures, which initialize the
start and end points of paths. A path individual is represented as a
(start-to-goal directed) list of points in the variable space. Initially,
n points are obtained by linear interpolation between the given
start and end points. Each obtained point undergoes a transforma-
tion, which e�ectively converts it to an all-atom protein structure
corresponding to a local minimum in the all-atom Rose�a energy
landscape. �e transformation utilizes stochastic optimization, so
repeating it N times yields the initial population of N paths.

Once the initial population is de�ned, successive generations
evolve as follows. First, new candidate path vertices are generated
from the existing population of paths. For every two consecutive
points in a path, a variation operator yields a new mid-point, which
is then converted to a (local minimum) all-atom structure. All of
these points are inserted into a nearest-neighbor graph (nngraph)
which connects a point to others within a pre-speci�ed radius r
measured via the Euclidean distance in the variable space.

Dijkstra’s algorithm is invoked on the nngraph to obtain the
�rst lowest-cost path connecting the given pair of start and goal
points.�e algorithm is invoked N times in order to obtain the N
lowest-cost paths with which to initialize the next generation. In
order for such paths to be non-redundant, once a path i ∈ [1,N ]
is identi�ed, its internal points are removed from the nngraph, so
that the next application of Dijkstra’s algorithm to �nd the next
lowest-cost path i + 1 operates on the induced subgraph.

Prior to each subsequent application, r is decreased from the
value that resulted in path i and continues to decrease in a propor-
tional regime until a candidate for path i + 1 cannot be found (the
graph becomes disconnected). In that case, r is rolled back to the
previous successful value and the resulting lowest-cost path is the
one initializing individual i + 1 in the population. �is selection
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mechanism allows the algorithm to evolve both low-cost and high-
resolution paths that be�er follow the actual energy landscape.

�e EA operates under a �xed computational budget, tallying up
the number of energy evaluations employed in the transformations
from points to structures. �e �tness of a path is its energetic cost,
which sums up the energy increase between structures correspond-
ing to consecutive points.

3 RESULTS
�e performance of the path-evolving EA is showcased here on
H-Ras, a protein central to cell growth and various human cancers.
�e EA is run to obtain paths connecting two known structures
corresponding to two di�erent functional states of H-Ras. �e
computational budget was �xed to 100, 000 �tness evaluations, 10
times less than that used in prior work that reconstructs energy
landscapes with an EA and then uses graph-based representations
to answer path queries [3]. �e N = 15 paths obtained in the �nal
generation with the path-evolving EA with this budget are rendered
in Fig. 1.

Figure 1: �e 15 lowest-cost paths of the �nal generation ob-
tained by the path-evolving EA are shown here (edges con-
nect consecutive structures in a path). A structure is shown
as a dot using as coordinates the values of the �rst two vari-
ables (prior work selects variables via principal component
analysis). �e other dots, which are color-coded, are those
of structures generated during the execution of the algo-
rithm. �e blue-to-red color-coding scheme tracks low-to-
high Rosetta all-atom energy values. Text annotations indi-
cate experimentally-known structures, with WT referring
to the healthy form and others pathogenic forms. �e leg-
end lists path costs and resolutions.

Table 1 juxtaposes the 10 lowest-cost paths obtained by the path-
evolving EA with the 10 lowest-cost paths obtained by the EA
in prior work [3]. �e comparison is limited to 10 paths, as the
resolution of the paths deteriorates a�erwards. While all paths
obtained by post-analysis of the reconstructed map in prior work
have the same resolution, the ones obtained by the path-evolving
EA have varying resolution. Table 1 orders the paths obtained by
the path-evolving EA from high to low resolution (resolutions are

rounded to at most two decimal places). �e juxtaposition shows
that the path-evolving EA is able to obtain very high-resolution
(0.133Å, rounded to 0.13 in Table 1) paths with much less com-
putational budget (and consequently fewer computed structures).
Path costs at high resolutions typically increase due to the high
ruggedness of protein energy landscapes. �e best path found by
the path-evolving EA has a cost of 292 Rose�a Energy Units (REUs)
and a resolution of 0.143Å (rounded to 0.14 in Table 1). �is is
comparable to the best path produced by the EA in [3], which has
a cost of 266 REUs and a resolution of 0.145Å (rounded to 0.15 in
Table 1).

Table 1: Top ten paths obtained by each algorithm.

Path-evolving EA proposed here
Cost 554 292 296 149 123 129 148 106 106 112
Res 0.13 0.14 0.14 0.16 0.17 0.17 0.17 0.18 0.19 0.19

EA proposed in [3]
Cost 588 546 504 470 408 395 376 324 306 266
Res 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

4 CONCLUSION
�e initial evaluation of the path-evolving EA suggests that it repre-
sents an improvement over state-of-the-art methods for modeling
protein structural excursions [3]. In addition, the proposed EA is
able to further improve the quality of its paths when a�orded more
�tness evaluations (data not shown here). We intend to pursue the
proposed path-evolving EA further as part of our goal of modeling
protein structural dynamics with reasonable computational bud-
gets. �e emphasis on lower computational budgets is due to the
foreseen applicability of this algorithm to obtain and then compare
the structural dynamics of various forms of a protein. �e la�er
would allow understanding the impact of mutation-altered dynam-
ics on protein function. It is also worth noting that the techniques
presented here are more general than the speci�c domain of protein
modeling and thus potentially useful for a broad range of problems
focused on landscape mapping and analysis.
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