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ABSTRACT
Drift Theory is currently the most common technique for the analy-

sis of randomized search heuristics because of its broad applicability

and the resulting tight �rst hitting time bounds. The biggest prob-

lem when applying a drift theorem is to �nd a suitable potential

function which maps a complex space into a single number, captur-

ing the essence of the state of the search in just one value.

We discuss another method for the analysis of randomized search

heuristics based on the Theory of Di�erential Equations. This

method considers the deterministic counterpart of the randomized

process by replacing probabilistic outcomes by their expectation,

and then bounding the error with good probability. We illustrate

this by analyzing an Ant Colony Optimization algorithm (ACO) for

the Minimum Spanning Tree problem (MST).
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1 INTRODUCTION
While core theorems for drift theory date back to the 1980s [4], this

technique found its �rst applications for the analysis of randomized

search heuristics only with the introduction of the additive drift

theorem in 2004 [5]. Since then, more and more variants were de-

veloped (see, for example, [2, 9]), aiming at convenient applicability.

However, common to all these theorems, the complex state space of

randomized search heuristics has to be captured in a single poten-

tial. Finding a good potential function for which the prerequisites

of a chosen drift theorem hold is thus the key di�culty in analyzing

randomized search heuristics with drift theorems.

Somewhat unnoticed in evolutionary computation,

Wormald [12] proved in 1999 a theorem which took a dif-

ferent angle: if one replaces the probabilistic outcomes of a process

by its expectation and projects its path, then, with a certain

probability, the random process will closely follow this path; this

path can be approximated by solving a corresponding di�erential

equation. The interesting part of this observation (also implicit in

many drift theorems) is that it generalizes to processes in many

dimensions. Thus, a complex, high dimensional random process

can be tracked with Wormald’s theorem (see Section 2).

For use of stochastic di�erential equation in evolutionary com-

puting, see [10, 13].
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The �rst (and so far only) application of Wormald’s theorem for

the analysis of randomized search heuristics was made for a �xed-

budget analysis of the (1+1) EA working on the OneMax function

in 2015 [6]. In our work we want to illustrate how an applica-

tion of Wormald’s theorem can be used for an easy analysis of an

Ant Colony Optimization (ACO) algorithm [11] on the Minimum

Spanning Tree optimization problem (see Section 3 for details).

ACOs have been analyzed on MST before [8], as well as in many

other areas [1, 3, 7, 8]. While most of these theoretical results ask

for expected optimization times, we focus on the ACO’s ability

to maintain a probability distribution over good solutions. We

show that for a speci�c set of instances the ACO will converge to a

pheromone setting which corresponds to the uniform distribution

over all minimum spanning trees (see Section 4).

2 WORMALD’S THEOREM
Consider a stochastic process (Y (t ) )t ≥0, where each random vari-

ableY (t )
takes value in some set S . We use Ht to denote a history of

the process up to time t , i.e. Ht = (Y (0) , . . . ,Y (t ) ). Let S+ denotes

the set of all sequences (Y (0) , . . . ,Y (t ) ) such thatY (t ) ∈ S . Consider

the following simpli�cation of Wormald’s theorem [12].

Theorem 2.1. For some �xed a ∈ N, let (Y (t )
i )1≤i≤a,t ≥0 be a

stochastic process, such that |Y (t )
i | < m for all Ht ∈ S+. Let D be

some bounded connected open set containing the closure of

{(0, z1, . . . , za ) | Pr [Y
(0)
i = zim, 1 ≤ i ≤ a] , 0 for somem}.

Assume the following three conditions hold, where for each 1 ≤ i ≤ a
fi : R+ × R

a → R is continuous function.

(i) (Boundedness hypothesis)
max

1≤i≤a
|Y

(t+1)
i − Y

(t )
i | ≤ 1 for any t ≥ 0.

(ii) (Trend hypothesis)
E[Y

(t+1)
i − Y

(t )
i | Ht ] = fi (t/m,Y

(t )
1
/m, . . . ,Y

(t )
a /m).

(iii) (Lipschitz condition)
∃L > 0 ∀u = (u1, . . . ,ua+1),v = (v1, . . . ,va+1) ∈ D, such
that | f (u) − f (v ) | ≤ Lmax

1≤i≤k |ui −vi |.

Then the following are true.

(a) For any (0, ẑ1, . . . , ẑa ) ∈ D the system of di�erential equa-
tions

dzi
dx
= fi (x , z1, . . . , za ), i = 1, . . . ,a

has a unique solution in D for zi : R → R passing through
zi (0) = ẑi , 1 ≤ i ≤ a, and which extends to points arbitrary
close to the boundary of D.

(b) Let λ = λ(m) = om (1). For some constant C > 0, with
probability 1 −Om ( 1λ exp(−mλ3)),

Y
(t )
i =mzi (t/m) +Om (λm)

1
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uniformly for 0 ≤ t ≤ σm and for each i, where zi (x ) is
the solution in (a) with ẑi =

1

mY
(0)
i , and σ = σ (m) is the

supremum of those x to which the solution can be extended
before reaching within `∞-distanceCλ of the boundary of D.

3 ACO AND MST
We consider the case of the ACO algorithm running on a graph G
with n nodes and m edges to �nd a minimum spanning tree. Let

(τ
(t )
i )1≤i≤m,t ≥0 be the sequence of random variables describing

the amount of pheromone on edge i after t iterations.

We use the simple ACO algorithm called 1-ANT described in [8].

The algorithm produces, in each iteration, a solution constructed by

a Prim-based procedure on a so-called edge-weighted construction

graph G ′ = 〈V ′,E ′〉, |V ′ | = |E | + 1, where G ′ is a directed graph

with pheromone values τ : E → [ρ, 1 − ρ] on the edges, initial

pheromone values τ0 = 0.5 and ρ ∈ (0, 0.5) is an evaporation

coe�cient. The ant starts from the initial vertex of the graph G ′

and moves between non-visited vertexes, choosing edges for the

solution with probability proportional to its pheromone value. At

the end of each iteration, the ACO updates pheromone values as

follows, depending on whether an edge is in the ant’s path pt of

the solution:

τ
(t+1)
i =




τ
(t )
i · (1 − ρ) + ρ, if ei ∈ pt ;

τ
(t )
i · (1 − ρ), if ei ∈ pt .

4 ANALYSIS: DIFFERENTIAL EQUATIONS
We consider Cn , the cycle of size n with all weights equal 1, as

input graph of our problem. Standard methods give us an expected

pheromone di�erence in one step:

E[τ
(t+1)
i − τ

(t )
i | Ht ] = −τ

(t )
i ρ + Pr [ei ∈ pt ] ρ.

Let τ0 ∈ [ρ, 1 − ρ] be the initial pheromone on an edge. Assume

that n is �xed and model the pheromones as continuous function

z (t ), thus getting the following system of di�erential equations.

z′i (t ) = −zi (t ) + 1 −
n∑
i=1

∑
pt ∈Pi

∏
j,i zj (t )

n−1∏
k=1

*
,
zi (t ) +

n−1∑
j=k

zi j (t )
+
-

,

zi (0) = τ0, (1)

zi (t ) ∈ D, i ∈ {1, . . . ,n},

where Pi is the set of all permutations of the n − 1 elements

ei1 , . . . , ein−1 , ei j ∈ E (Gn ), i j , i , i.e. Pi is a set of possible ant’s

path combinations, such that the path does not contain edge ei ; and

D = [0, 2] × (0, 1)n .

Now, by Theorem 2.1, the track of pheromone values concen-

trates near the solution of system (1).

Theorem 4.1. With probability 1 −O
(
ρ−1/4 exp

(
−ρ−1/4

))
,

τ
(t )
k =

(
τ0 −

n − 1

n

)
e−ρt +

n − 1

n
+O (ρ1/4)

uniformly for all k ∈ {1, . . . ,n} and all 0 ≤ t ≤ ρ−1.

The theorem was given for all pheromone values starting with

the same value. Figure 1 shows that pheromone values come close to

the solution tracks and goes to
n−1
n together even if initial values are
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Figure 1: Solution of the di�erential equations system (1)
(smooth tracks) and ACO solution (ragged tracks) for the
MST problem for the cycle of size 3. The �lled areas show a
di�erence between di�erential equation and algorithm so-
lutions. The dashed lines are the ACO thresholds ρ and 1− ρ
and the limiting value 2/3.

very sparsely distributed. The �gure also shows a very interesting

non-monotone behavior of a pheromone values during it’s approach

of the limiting value of 2/3.
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