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ABSTRACT
We turn the Covariance Matrix Adaptation Evolution Strategy into
an adaptive Markov Chain Monte Carlo (or MCMC) sampling al-
gorithm that adapts online to the target distribution, i.e. the distri-
bution to be sampled from. We call the resulting algorithm CMA-
Sampling. It exhibits a higher convergence rate, a be�er mixing,
and consequently a more e�ective MCMC sampler. We look at a few
variants and compare their adaptiveness to a number of other adap-
tive samplers, including Haario et. al’s AM sampler, on a testsuite
of 4 target distributions.
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1 INTRODUCTION
Bayesian inference uses Bayes’ rule to update the prior distribution
of the parameters to be learned when new evidence becomes avail-
able resulting in the posterior distribution [1]. Its use, however,
is hampered by two facts. One, the integrals can only be evalu-
ated analytically for certain families of probability distributions,
and two, numerical integration methods su�er from the curse of
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dimensionality and can only be used for low dimensional state
spaces.

Monte Carlo samplers o�er an alternative by generating samples
according to the distribution of interest. �e integral

∫
f (x)p (x)dx

for any function f w.r.t. to the probability measure p (x)dx can be
approximated by 1

N
∑N
n=1 f (xn ) when the samples xn are gener-

ated according to p (x). However, the error in the estimate is of the
order O (1/

√
N ) where N is the number of samples. �is is both

good and bad news. Bad news because large amounts of samples are
needed to get a small error. 1 �e good news is that this estimate is
independent of the dimension of the space on which the probability
distributions are de�ned. As a result, Markov chain Monte Carlo
(MCMC) samplers are the only remaining alternative when we deal
with arbitrary high-dimensional probability distributions.

Most MCMC samplers can be seen as an extension of the Metrop-
olis Hastings (MH) algorithm. �eir performance critically depends
on the proposal distribution used and requires a lot of tuning to
�nd the optimal one for the problem at hand. Adaptive Metropolis
samplers were introduced for this reason, with the main goal of
adaptation being to improve mixing in the chain [2]. �is was
achieved updating online the covariance matrix of the Gaussian
proposal distribution.

Covariance Matrix Adaptation Evolution Strategies [3] is the
state of the art in black box stochastic optimization. It continuously
adapts the covariance matrix of the search distribution to generate
be�er o�spring. In recent work we have shown how its most basic
variant (1+1)-CMA can be used to adapt the covariance matrix of
the proposal distribution and that the resulting adaptive sampler
outperforms other ones on a standard test-suite [4].

�e rest of the paper is organized as follows. In Section 2, we
review the samplers that we incorporated in the comparison. In
Section 3 we describe the test-suite used and the experiment done
before we conclude and describe future work in Section 4.

2 MCMC SAMPLERS
�e samplers compared are 1) Metropolis-Hastings with optimal
proposal distribution (MH), 2) the Adaptive Metropolis (AM) algo-
rithm, and 3) two variants of CMA based Sampling (CMA) [1–3].

1For instance, to estimate π up to a precision of 10−10 at least 1020 samples are needed.
�is led Alan Sokal, a well-known physicist doing research on MC samplers, to the
quote ”Monte Carlo is is an extremely bad method; it should be used only when all
alternative methods are worse.”
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All samplers can be seen as extensions of the basic MH-algorithm
described next.

MH generates samples from the target distribution π (x) in two
steps. First, it uses a proposal distribution (multivariate Gauss-
ian distribution) with mean vector xn and covariance matrix Cn
to generate a candidate x∗ ∼ N (xn ,Cn ) where xn is the cur-
rent sample. Next, the MH-acceptance criteria is used to decide
whether the proposed x∗ or the current xn becomes the next sam-
ple xn+1. In case of a symmetric distribution like the multivariate
Gaussian, it states that the candidate x∗ is accepted with prob-
ability α (xn ,x∗) = min {1, π (x∗)/π (xn )}. �is criteria ensures
xn+1 ∼ π (x) whenever xn ∼ π (x), i.e, samples are generated ac-
cording to the target distribution when the chain has converged.
Many challenges impede MH from its maximum potential. We
focus onmixing. In order to give reliable estimates, the chain has to
explore evenly all areas that contribute signi�cantly to the probabil-
ity mass of the target distribution. When this is the case the chain
is said to mix well. A good adaptive sampler mixes well rapidly and
we study the adaptiveness of some samplers.

Basically, adaptive MCMC is MH where the Gaussian proposal
distribution is adaptive, i.e. the proposed candidate x∗ ∼ N (xn ,Cn )
where Cn changes over time. Adaptive samplers di�er in the global
scales and covariances used and how they are updated.

In case of AM, the global scale remains �xed to σ = 1 and the
covariance matrix is updated as
Cn+1 = (1− 1

n+1 )Cn+
1

n+1 (xn+1 −mn ) (xn+1 −mn )
> wheremn ,∑n

i=1 xn is the sample mean of the previous states.
Algorithm 1 shows the generic algorithm CMA Sampler. We

considered (1 + 1)-CMA and (µ,λ)−CMA. In all cases we use the
recommended parameter se�ings as given in [3, 5, 6]. CMA uses
more complex update rules than AM. But these rules guarantee
that CMA-ES is invariant under general linear transformations, cf.
Proposition 9 in [3] that also motivates the update rules and gives
the default parameter se�ings.

Algorithm 1: CMA Sampling
repeat

generate parents zi ∼ N (xn , Cn ) for i = 1, · · · ,λ
recombine the µ best ones to get x∗
u ∼ U ([0,1])
if u <= α (xn ,x∗,π ), cf. Eq. 2 then xn+1 ← x∗

else xn+1 ← xn
update the global scale σn
update the covariance Cn

until stopping criterion is met

3 EXPERIMENTS
We use the suboptimality factor b as performance criterion to com-
pare the adaptiveness of the samplers considered:

b , d

∑d
i=1 λ

−2
i

(
∑d
i=1 λ

−1
i )2

(1)

where d is the dimension of the state space and the λi are the
eigenvalues of the matrixC1/2

n C−1/2tarдet .Cn is the covariance matrix

Figure 1: Suboptimality factor b for the four samplers for di-
mension d =100 π3 target distribution. �e CMA algorithms
adapt faster.

of the proposal distribution at step n. Note that b is constant for
the MH-sampler. �e closer b > 1 is to 1, the be�er the mixing of
the chain, cf. [7]

In Figure 1 we have plo�ed b for all samplers for target π3 in the
testsuite used in [2]. It consists of 4 target distributions de�ned over
Rd that are increasingly more challenging for samplers. �e results
shown are averaged over 100 independent runs. Here, we only
report on one of the twisted distributions in dimension d = 100
since these are the most di�cult ones to sample from and the
potential bene�t of adaptive MCMC is the highest. �e results for
the other targets and dimensions d are similar.

4 CONCLUSION
Although we used the strategic parameter se�ings originally pro-
posed for optimization, adaptive CMA samplers show promising
results. Our working hypothesis is that the invariance properties
of CMA explain its be�er adaptiveness [3]. Future work will open
perspectives for population MCMC samplers.
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