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ABSTRACT
In this paper we propose an interactive genetic algorithm to evolve
maze levels for computer games. We represent a maze with a
cellular automaton and the genetic algorithm evolves the cellular
automata rules applied to a starting maze level state. Users then rate
the �tness of a subset of the generated population using an image
of the top-down view of the maze. A�er ten generations, users
then play through the best evolved maze within a maze runner type
game using a �rst person perspective. User ratings show that our
IGA was able to evolve highly rated mazes.
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1 INTRODUCTION
�is paper explores an interactive approach utilizing cellular au-
tomata. We show that human interaction can be used to guide an
evolutionary search of procedural level generation for mazes.

Maze running games are a type of game where the player speeds
through a maze to �nd an objective in the maze. �e design of the
maze makes these games fun to play and traditionally, expensive
game level designers handcra�ed interesting and fun mazes for
maze running games. We use an Interactive Genetic Algorithm
(IGA) to evolve mazes for maze running games.

In general, procedural content generation refers to the concept
of automated game level (or map) design. �ere are several main-
stream games that create their content procedurally (instead of
using a level designer) such as the famous Diablo game series [1].
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Compton and Mateas split levels into pieces, algorithmically gener-
ate the design on each piece and then combine the pieces together
to generate a complete level for their platformer game [4]. Smith
et. al. designed a level generator for 2-D platformer game that uses
a model of player action-rhythm [10] to generate levels of appro-
priate di�culty. In Johnson et. al. Cellular Automata were used to
generate in�nite cave level maps [7]. Procedural content generation
has also been used to dynamically adjust a level’s di�culty [6] and
to study the e�ects of level design on player behavior [9].

Closer to our work, Marks and Hom [5] evolved a set of board
game rules using a GA to make the game equally hard to win for
either side. Cardamone et al. use a GA to evolve maps to maximize
a �tness function based on the player’s average �ghting time [3].

L. R. Smith’s work on evolving Fourier series ”biomorphs” [11]
using an interactive genetic algorithm for procedural content gener-
ation can be considered early work on generating player characters.
Later, IGA’s were applied to track generation for the TORCs racing
simulator [2] game where users assigned �tness to tracks. �is
work, to the best our knowledge, is the closest to the work done in
this paper as we use a similar approach for users assigning �tness.
Our work di�ers in using cellular automata to construct mazes
instead of the control point method used in Cardamone’s work [2].

2 METHODOLOGY
We used Unity3D, along with the code for cave generation from
Sebastian Lague�s Cave Generation Tutorial [8]. �e chromosomes
used contain the cellular automata rules and starting map state.
Using region merging a�erwards we were able to guarantee a
complete maze level [8]. Because IGAs su�er from user fatigue [2],
we used a small population of size sixteen and only presented the
user with the �rst nine non-duplicate mazes from the population.

2.1 Interactive Genetic Algorithm
We used �tness proportional selection, two point crossover, and
point mutation. Our chromosome is represented as a one dimen-
sional array of bits, the �rst four hundred representing the starting
map state for our 20 × 20 maze level, and the remaining eighteen
representing the cellular automata rules applied to the map. We
used two point crossover, but one point was constrained to the
starting map state section and the other crossover point was con-
strained to the cellular automata rules section. We use the canonical
GA rather than a more elitist method as we want to explore the
adaptive landscape and retain some diversity in our population.

We have eighteen bits in our chromosome for encoding the rules
of a cellular automata. Since a cell can have a maximum of nine
neighbors including itself, we split the rules into two parts. �e �rst
nine bits specify the bit mask for changing cell state to be �lled, the
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last nine bits specify the bit mask for changing cell state to blank
(or un�lled).

2.2 Fitness Evaluation
We present only a subset of nine mazes from the population for
user evaluation using sliding bars below each maze and a top down
view. �e seven mazes that are not shown are given the �tness of
the maze that has the shortest hamming distance to the maze.

3 RESULTS AND DISCUSSION

Figure 1: Le�: Evolution mode. Right: Maze running mode

We ran our IGA with seven di�erent users for ten generations
per user. A�er the user �nished, we asked the user to play the
highest ranked level from the initial population, the highest ranked
level from the ��h generation, and the highest ranked level from
the last generation. ”Playing” a maze, meant that the user saw the
game from a �rst person perspective as shown in Figure 1 on the
right. Users then rated the play-through of the level on a Likert
scale of one to �ve. �e highest �tness mazes from the initial
population received an average rating of 2.75, with the middle
and �nal generation best mazes ge�ing be�er at 3.25 and 3.75
respectively. We can see the improvement over time in Figure 2.

Figure 2: Average scale rating for each sample generation

We did encounter users that rated the �nal generation levels as
less fun than middle generation levels because the �nal generation
levels were more di�cult. We conjecture that perhaps more di�cult
levels are more fun, but only up to a point.

3.1 Level Metrics and Behaviour
A�er collecting the evolved mazes and their Likert ratings we then
evaluated the mazes on more objective criteria. We considered the
number of dead ends, non-looping solution paths, the number of
turns on the shortest solution path, and the number of unconnected
wall sections, not including the outer border wall. Figure 3 shows

Figure 3: Average metrics for each rating

how these metrics map to Likert scale values for the mazes that
were evolved. �e number of solution paths and number of turns
on the shortest path follow a trend where the higher rated a level
the fewer solution paths exist and with more turns on those paths.
�e number of dead ends and wall sections go up and down. We
believe this was because we had a larger number of trivial dead
ends on 3 rated mazes compared to 4 rated mazes.

4 CONCLUSION AND FUTUREWORK
Our research focuses on evolving personalized enjoyable levels for
a maze runner game using an interactive genetic algorithm and
cellular automata. �e results show that we were able to evolve
enjoyable maze runner levels. Limiting user fatigue by having them
evaluate only a subsection of the population and only evaluating
a small number of generations does not prevent the IGA from
evolving good levels quickly.

�is approach could be applied to di�erent game genres like
First Person Shooters, Real Time Strategy games, and Platformers
to evolve levels with very di�erent criteria for level �tness. A future
approach that would allow for a high number of generations run
and not increase user fatigue might be to have users evolve the
�tness function rather than assigning the �tness directly.
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