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ABSTRACT

Previous work has demonstrated the utility of graph databases
as a tool for collecting and analyzing ancestry in evolutionary
computation runs. That work focused on sections of individual
runs, whereas this poster illustrates the application of these ideas
on the entirety of large runs (up to one million individuals) and
combinations of multiple runs. Here we use these tools to generate
graphs showing all the ancestors of successful individuals from
a variety of stack-based genetic programming runs on software
synthesis problems. These graphs highlight important moments
in the evolutionary process. They also allow us to compare the
dynamics when using different evolutionary tools, such as different
selection mechanisms or representations, as well as comparing the
dynamics for successful and unsuccessful runs.
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1 INTRODUCTION

Reporting results of genetic programming (GP) and evolutionary
computation is frequently limited to aggregate statistics such as
mean best fitness or percentage of successful runs. Unfortunately
this fails to convey the complex dynamics of such evolutionary
systems and obscures or omits potentially valuable information
about why the runs behaved as they did. Previous work [3] has
demonstrated the utility of graph databases as tools for collecting
and analyzing ancestry in GP runs, but was focused on sections of
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individual runs. In this poster we illustrate the use of these tools
as a means of exploring entire ancestry graphs. We use the Titan
graph database along with the Gremlin shell and the Tinkerpop
query tools to store the parent-child relationships from genetic
programming runs, and to extract the ancestry graphs of specified
individuals. We then visualize these subgraphs using the dot graph
layout tool from the Graphviz library.!

2 EXAMPLE: SUCCESS VS. FAILURE

Here we illustrate these ideas by extracting and plotting the ances-
tors of final generation individuals in both a successful (Figure 1)
and an unsuccessful run (Figure 2) of the Replace Space With New-
line software synthesis problem [1, 2] using lexicase selection. The
successful run shows all the ancestors of that run’s winners (i.e.,
individuals with total error 0, discovered at generation 129). The
unsuccessful run shows the ancestors of all individuals from gen-
eration 300, when the run was terminated; the ancestry graph in
Figure 2 is truncated at generation 200 for space reasons, but the
run was unsuccessful up to generation 300.

In both figures generations run from the initial population at the
top to the final generation at the bottom, one generation per row.
Both of these runs used a population size of 1,000, but far fewer
individuals are included in the graphs because only a small subset
of the individuals in any given generation go on to be ancestors
of individuals in subsequent generations. Each individual is repre-
sented as a rectangle whose width is proportional to the number
of parent selections that individual received, and whose height is
proportional to the number of its offspring that are included in the
ancestry graph. The color of an individual is determined by its total
error; 0 total error is bright green, moving through blues to bright
red, which represents total error of 10,000 or greater. A directed
edge in the graph indicates a parent-child relation, with the edge
going from the parent down to the child. A child with only a single
incoming edge is the result of a mutation operator and children
with two incoming edges are the result of a recombination [1].

Both Figures 1 and 2 illustrate a common pattern in the early gen-
erations where there is a substantial number of highly selected indi-
viduals (i.e., very wide rectangles). This is presumably because most
individuals in the early generations perform poorly, as evidenced by
the prevalence of red and pink, with a few slightly-less-bad individ-
uals receiving the bulk of the selections. After several generations,
however, the population gains competence (as evidenced by more
purple and dark blue) and there are fewer instances where a single
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Figure 1: Ancestry graph for individual with total error 0 in
successful run of the Replace Space With Newline problem.

individual receives a very high proportion of the selection events,
as evidenced by the large number of small rectangles.

After that initial phase, the behavior in the unsuccessful run
(Figure 2) becomes static, with the width of the graph (essentially
the number of parents in each generation) remaining roughly con-
stant, with no highly selected (i.e., wide) individuals. The colors
also indicate that the total error is not improving substantially over
time, remaining mostly between pink and purple. The best total
error in fact remains at 234 from generation 16 to 270, although
there is a gradual improvement in the last 30 generations with the
best error at the end of the run being 215.

In the successful run (Figure 1), however, there are clear changes
in the dynamics over time. By generation 14 the best individual
is able to correctly solve 124 of the 200 test cases. Then starting
around generation 59 there is a “narrowing” of the graph, with
several highly selected (i.e., wide) individuals dominating the an-
cestry for the next ten generations. This narrowing represents an
important “discovery” which leads to individuals that have zero
error on an additional 9% (18) of the test cases. The graph then
widens out again until the rapid convergence on the solution in
the final generations. The graph also highlights three highly se-
lected individuals in generation 87 where for the first time the best
individual has zero error on an additional 18 test cases.
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Figure 2: Ancestry graph for all of the individuals in the fi-
nal generation for an unsuccessful run of the Replace Space
With Newline problem. This graph is truncated at genera-
tion 200; the run went to generation 300 without success.
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