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ABSTRACT
Previous work has demonstrated the utility of graph databases
as a tool for collecting and analyzing ancestry in evolutionary
computation runs. �at work focused on sections of individual
runs, whereas this poster illustrates the application of these ideas
on the entirety of large runs (up to one million individuals) and
combinations of multiple runs. Here we use these tools to generate
graphs showing all the ancestors of successful individuals from
a variety of stack-based genetic programming runs on so�ware
synthesis problems. �ese graphs highlight important moments
in the evolutionary process. �ey also allow us to compare the
dynamics when using di�erent evolutionary tools, such as di�erent
selection mechanisms or representations, as well as comparing the
dynamics for successful and unsuccessful runs.
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1 INTRODUCTION
Reporting results of genetic programming (GP) and evolutionary
computation is frequently limited to aggregate statistics such as
mean best �tness or percentage of successful runs. Unfortunately
this fails to convey the complex dynamics of such evolutionary
systems and obscures or omits potentially valuable information
about why the runs behaved as they did. Previous work [3] has
demonstrated the utility of graph databases as tools for collecting
and analyzing ancestry in GP runs, but was focused on sections of
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individual runs. In this poster we illustrate the use of these tools
as a means of exploring entire ancestry graphs. We use the Titan
graph database along with the Gremlin shell and the Tinkerpop
query tools to store the parent-child relationships from genetic
programming runs, and to extract the ancestry graphs of speci�ed
individuals. We then visualize these subgraphs using the dot graph
layout tool from the Graphviz library.1

2 EXAMPLE: SUCCESS VS. FAILURE
Here we illustrate these ideas by extracting and plo�ing the ances-
tors of �nal generation individuals in both a successful (Figure 1)
and an unsuccessful run (Figure 2) of the Replace Space With New-
line so�ware synthesis problem [1, 2] using lexicase selection. �e
successful run shows all the ancestors of that run’s winners (i.e.,
individuals with total error 0, discovered at generation 129). �e
unsuccessful run shows the ancestors of all individuals from gen-
eration 300, when the run was terminated; the ancestry graph in
Figure 2 is truncated at generation 200 for space reasons, but the
run was unsuccessful up to generation 300.

In both �gures generations run from the initial population at the
top to the �nal generation at the bo�om, one generation per row.
Both of these runs used a population size of 1,000, but far fewer
individuals are included in the graphs because only a small subset
of the individuals in any given generation go on to be ancestors
of individuals in subsequent generations. Each individual is repre-
sented as a rectangle whose width is proportional to the number
of parent selections that individual received, and whose height is
proportional to the number of its o�spring that are included in the
ancestry graph. �e color of an individual is determined by its total
error; 0 total error is bright green, moving through blues to bright
red, which represents total error of 10,000 or greater. A directed
edge in the graph indicates a parent-child relation, with the edge
going from the parent down to the child. A child with only a single
incoming edge is the result of a mutation operator and children
with two incoming edges are the result of a recombination [1].

Both Figures 1 and 2 illustrate a common pa�ern in the early gen-
erations where there is a substantial number of highly selected indi-
viduals (i.e., very wide rectangles). �is is presumably because most
individuals in the early generations perform poorly, as evidenced by
the prevalence of red and pink, with a few slightly-less-bad individ-
uals receiving the bulk of the selections. A�er several generations,
however, the population gains competence (as evidenced by more
purple and dark blue) and there are fewer instances where a single

1h�p://titandb.io, h�ps://tinkerpop.apache.org/, and h�p://www.graphviz.org/
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Figure 1: Ancestry graph for individual with total error 0 in
successful run of the Replace Space With Newline problem.

individual receives a very high proportion of the selection events,
as evidenced by the large number of small rectangles.

A�er that initial phase, the behavior in the unsuccessful run
(Figure 2) becomes static, with the width of the graph (essentially
the number of parents in each generation) remaining roughly con-
stant, with no highly selected (i.e., wide) individuals. �e colors
also indicate that the total error is not improving substantially over
time, remaining mostly between pink and purple. �e best total
error in fact remains at 234 from generation 16 to 270, although
there is a gradual improvement in the last 30 generations with the
best error at the end of the run being 215.

In the successful run (Figure 1), however, there are clear changes
in the dynamics over time. By generation 14 the best individual
is able to correctly solve 124 of the 200 test cases. �en starting
around generation 59 there is a “narrowing” of the graph, with
several highly selected (i.e., wide) individuals dominating the an-
cestry for the next ten generations. �is narrowing represents an
important “discovery” which leads to individuals that have zero
error on an additional 9% (18) of the test cases. �e graph then
widens out again until the rapid convergence on the solution in
the �nal generations. �e graph also highlights three highly se-
lected individuals in generation 87 where for the �rst time the best
individual has zero error on an additional 18 test cases.
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Figure 2: Ancestry graph for all of the individuals in the �-
nal generation for an unsuccessful run of the Replace Space
With Newline problem. �is graph is truncated at genera-
tion 200; the run went to generation 300 without success.
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