
Visualizing genetic programming ancestries using graph
databases

Nicholas Freitag McPhee
University of Minnesota, Morris

Morris, Minnesota, USA
mcphee@morris.umn.edu

Maggie M. Casale
Design Center Inc.

St. Paul, Minnesota, USA
mcasale@designcenterideas.com

Mitchell Finzel
University of Minnesota, Morris

Morris, Minnesota, USA
�nze008@morris.umn.edu

�omas Helmuth
Washington and Lee University

Lexington, Virginia, USA
helmutht@wlu.edu

Lee Spector
Hampshire College

Amherst, Massachuse�s, USA
lspector@hampshire.edu

ABSTRACT
Previous work has demonstrated the utility of graph databases
as a tool for collecting and analyzing ancestry in evolutionary
computation runs. �at work focused on sections of individual
runs, whereas this poster illustrates the application of these ideas
on the entirety of large runs (up to one million individuals) and
combinations of multiple runs. Here we use these tools to generate
graphs showing all the ancestors of successful individuals from
a variety of stack-based genetic programming runs on so�ware
synthesis problems. �ese graphs highlight important moments
in the evolutionary process. �ey also allow us to compare the
dynamics when using di�erent evolutionary tools, such as di�erent
selection mechanisms or representations, as well as comparing the
dynamics for successful and unsuccessful runs.

CCS CONCEPTS
•Human-centered computing→ Graph drawings; Scienti�c
visualization; •Computingmethodologies→Heuristic function
construction; Genetic programming;

KEYWORDS
visualization; genetic programming; graph database; ancestry
ACM Reference format:
Nicholas Freitag McPhee, Maggie M. Casale, Mitchell Finzel, �omas Hel-
muth, and Lee Spector. 2017. Visualizing genetic programming ancestries
using graph databases. In Proceedings of GECCO ’17 Companion, Berlin,
Germany, July 15-19, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3075617

1 INTRODUCTION
Reporting results of genetic programming (GP) and evolutionary
computation is frequently limited to aggregate statistics such as
mean best �tness or percentage of successful runs. Unfortunately
this fails to convey the complex dynamics of such evolutionary
systems and obscures or omits potentially valuable information
about why the runs behaved as they did. Previous work [3] has
demonstrated the utility of graph databases as tools for collecting
and analyzing ancestry in GP runs, but was focused on sections of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3075617

individual runs. In this poster we illustrate the use of these tools
as a means of exploring entire ancestry graphs. We use the Titan
graph database along with the Gremlin shell and the Tinkerpop
query tools to store the parent-child relationships from genetic
programming runs, and to extract the ancestry graphs of speci�ed
individuals. We then visualize these subgraphs using the dot graph
layout tool from the Graphviz library.1

2 EXAMPLE: SUCCESS VS. FAILURE
Here we illustrate these ideas by extracting and plo�ing the ances-
tors of �nal generation individuals in both a successful (Figure 1)
and an unsuccessful run (Figure 2) of the Replace Space With New-
line so�ware synthesis problem [1, 2] using lexicase selection. �e
successful run shows all the ancestors of that run’s winners (i.e.,
individuals with total error 0, discovered at generation 129). �e
unsuccessful run shows the ancestors of all individuals from gen-
eration 300, when the run was terminated; the ancestry graph in
Figure 2 is truncated at generation 200 for space reasons, but the
run was unsuccessful up to generation 300.

In both �gures generations run from the initial population at the
top to the �nal generation at the bo�om, one generation per row.
Both of these runs used a population size of 1,000, but far fewer
individuals are included in the graphs because only a small subset
of the individuals in any given generation go on to be ancestors
of individuals in subsequent generations. Each individual is repre-
sented as a rectangle whose width is proportional to the number
of parent selections that individual received, and whose height is
proportional to the number of its o�spring that are included in the
ancestry graph. �e color of an individual is determined by its total
error; 0 total error is bright green, moving through blues to bright
red, which represents total error of 10,000 or greater. A directed
edge in the graph indicates a parent-child relation, with the edge
going from the parent down to the child. A child with only a single
incoming edge is the result of a mutation operator and children
with two incoming edges are the result of a recombination [1].

Both Figures 1 and 2 illustrate a common pa�ern in the early gen-
erations where there is a substantial number of highly selected indi-
viduals (i.e., very wide rectangles). �is is presumably because most
individuals in the early generations perform poorly, as evidenced by
the prevalence of red and pink, with a few slightly-less-bad individ-
uals receiving the bulk of the selections. A�er several generations,
however, the population gains competence (as evidenced by more
purple and dark blue) and there are fewer instances where a single

1h�p://titandb.io, h�ps://tinkerpop.apache.org/, and h�p://www.graphviz.org/

245

http://titandb.io
https://tinkerpop.apache.org/
http://www.graphviz.org/

GECCO ’17 Companion, July 15-19, 2017, Berlin, GermanyNicholas Freitag McPhee, Maggie M. Casale, Mitchell Finzel, Thomas Helmuth, and Lee Spector

Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Gen 21

Gen 22

Gen 23

Gen 24

Gen 25

Gen 26

Gen 27

Gen 28

Gen 29

Gen 30

Gen 31

Gen 32

Gen 33

Gen 34

Gen 35

Gen 36

Gen 37

Gen 38

Gen 39

Gen 40

Gen 41

Gen 42

Gen 43

Gen 44

Gen 45

Gen 46

Gen 47

Gen 48

Gen 49

Gen 50

Gen 51

Gen 52

Gen 53

Gen 54

Gen 55

Gen 56

Gen 57

Gen 58

Gen 59

Gen 60

Gen 61

Gen 62

Gen 63

Gen 64

Gen 65

Gen 66

Gen 67

Gen 68

Gen 69

Gen 70

Gen 71

Gen 72

Gen 73

Gen 74

Gen 75

Gen 76

Gen 77

Gen 78

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

Gen 88

Gen 89

Gen 90

Gen 91

Gen 92

Gen 93

Gen 94

Gen 95

Gen 96

Gen 97

Gen 98

Gen 99

Gen 100

Gen 101

Gen 102

Gen 103

Gen 104

Gen 105

Gen 106

Gen 107

Gen 108

Gen 109

Gen 110

Gen 111

Gen 112

Gen 113

Gen 114

Gen 115

Gen 116

Gen 117

Gen 118

Gen 119

Gen 120

Gen 121

Gen 122

Gen 123

Gen 124

Gen 125

Gen 126

Gen 127

Gen 128

Gen 129

Figure 1: Ancestry graph for individual with total error 0 in
successful run of the Replace Space With Newline problem.

individual receives a very high proportion of the selection events,
as evidenced by the large number of small rectangles.

A�er that initial phase, the behavior in the unsuccessful run
(Figure 2) becomes static, with the width of the graph (essentially
the number of parents in each generation) remaining roughly con-
stant, with no highly selected (i.e., wide) individuals. �e colors
also indicate that the total error is not improving substantially over
time, remaining mostly between pink and purple. �e best total
error in fact remains at 234 from generation 16 to 270, although
there is a gradual improvement in the last 30 generations with the
best error at the end of the run being 215.

In the successful run (Figure 1), however, there are clear changes
in the dynamics over time. By generation 14 the best individual
is able to correctly solve 124 of the 200 test cases. �en starting
around generation 59 there is a “narrowing” of the graph, with
several highly selected (i.e., wide) individuals dominating the an-
cestry for the next ten generations. �is narrowing represents an
important “discovery” which leads to individuals that have zero
error on an additional 9% (18) of the test cases. �e graph then
widens out again until the rapid convergence on the solution in
the �nal generations. �e graph also highlights three highly se-
lected individuals in generation 87 where for the �rst time the best
individual has zero error on an additional 18 test cases.

ACKNOWLEDGEMENTS
�is material is based upon work supported by the National Science
Foundation under Grants No. 1617087, 1129139 and 1331283. Any
opinions, �ndings, and conclusions or recommendations expressed

Gen 0

Gen 1

Gen 2

Gen 3

Gen 4

Gen 5

Gen 6

Gen 7

Gen 8

Gen 9

Gen 10

Gen 11

Gen 12

Gen 13

Gen 14

Gen 15

Gen 16

Gen 17

Gen 18

Gen 19

Gen 20

Gen 21

Gen 22

Gen 23

Gen 24

Gen 25

Gen 26

Gen 27

Gen 28

Gen 29

Gen 30

Gen 31

Gen 32

Gen 33

Gen 34

Gen 35

Gen 36

Gen 37

Gen 38

Gen 39

Gen 40

Gen 41

Gen 42

Gen 43

Gen 44

Gen 45

Gen 46

Gen 47

Gen 48

Gen 49

Gen 50

Gen 51

Gen 52

Gen 53

Gen 54

Gen 55

Gen 56

Gen 57

Gen 58

Gen 59

Gen 60

Gen 61

Gen 62

Gen 63

Gen 64

Gen 65

Gen 66

Gen 67

Gen 68

Gen 69

Gen 70

Gen 71

Gen 72

Gen 73

Gen 74

Gen 75

Gen 76

Gen 77

Gen 78

Gen 79

Gen 80

Gen 81

Gen 82

Gen 83

Gen 84

Gen 85

Gen 86

Gen 87

Gen 88

Gen 89

Gen 90

Gen 91

Gen 92

Gen 93

Gen 94

Gen 95

Gen 96

Gen 97

Gen 98

Gen 99

Gen 100

Gen 101

Gen 102

Gen 103

Gen 104

Gen 105

Gen 106

Gen 107

Gen 108

Gen 109

Gen 110

Gen 111

Gen 112

Gen 113

Gen 114

Gen 115

Gen 116

Gen 117

Gen 118

Gen 119

Gen 120

Gen 121

Gen 122

Gen 123

Gen 124

Gen 125

Gen 126

Gen 127

Gen 128

Gen 129

Gen 130

Gen 131

Gen 132

Gen 133

Gen 134

Gen 135

Gen 136

Gen 137

Gen 138

Gen 139

Gen 140

Gen 141

Gen 142

Gen 143

Gen 144

Gen 145

Gen 146

Gen 147

Gen 148

Gen 149

Gen 150

Gen 151

Gen 152

Gen 153

Gen 154

Gen 155

Gen 156

Gen 157

Gen 158

Gen 159

Gen 160

Gen 161

Gen 162

Gen 163

Gen 164

Gen 165

Gen 166

Gen 167

Gen 168

Gen 169

Gen 170

Gen 171

Gen 172

Gen 173

Gen 174

Gen 175

Gen 176

Gen 177

Gen 178

Gen 179

Gen 180

Gen 181

Gen 182

Gen 183

Gen 184

Gen 185

Gen 186

Gen 187

Gen 188

Gen 189

Gen 190

Gen 191

Gen 192

Gen 193

Gen 194

Gen 195

Gen 196

Gen 197

Gen 198

Gen 199

Gen 200

Gen 201

Gen 202

Gen 203

Gen 204

Gen 205

Gen 206

Gen 207

Gen 208

Gen 209

Gen 210

Gen 211

Gen 212

Gen 213

Gen 214

Gen 215

Gen 216

Gen 217

Gen 218

Gen 219

Gen 220

Gen 221

Gen 222

Gen 223

Gen 224

Gen 225

Gen 226

Gen 227

Gen 228

Gen 229

Gen 230

Gen 231

Gen 232

Gen 233

Gen 234

Gen 235

Gen 236

Gen 237

Gen 238

Gen 239

Gen 240

Gen 241

Gen 242

Gen 243

Gen 244

Gen 245

Gen 246

Gen 247

Gen 248

Gen 249

Gen 250

Gen 251

Gen 252

Gen 253

Gen 254

Gen 255

Gen 256

Gen 257

Gen 258

Gen 259

Gen 260

Gen 261

Gen 262

Gen 263

Gen 264

Gen 265

Gen 266

Gen 267

Gen 268

Gen 269

Gen 270

Gen 271

Gen 272

Gen 273

Gen 274

Gen 275

Gen 276

Gen 277

Gen 278

Gen 279

Gen 280

Gen 281

Gen 282

Gen 283

Gen 284

Gen 285

Gen 286

Gen 287

Gen 288

Gen 289

Gen 290

Gen 291

Gen 292

Gen 293

Gen 294

Gen 295

Gen 296

Gen 297

Figure 2: Ancestry graph for all of the individuals in the �-
nal generation for an unsuccessful run of the Replace Space
With Newline problem. �is graph is truncated at genera-
tion 200; the run went to generation 300 without success.

in this publication are those of the authors and do not necessarily
re�ect the views of the National Science Foundation.

REFERENCES
[1] �omas Helmuth. 2015. General Program Synthesis from Examples Using Genetic

Programming with Parent Selection Based on Random Lexicographic Orderings
of Test Cases. Ph.D. dissertation. University of Massachuse�s, Amherst. h�p:
//scholarworks.umass.edu/dissertations 2/465/

[2] �omas Helmuth and Lee Spector. 2015. General program synthesis bench-
mark suite. In GECCO ’15: Proceedings of the 2015 Conference on Genetic and
Evolutionary Computation (July, 2015).

[3] Nicholas Freitag McPhee, David Donatucci, and �omas Helmuth. 2016. Using
Graph Databases to Explore the Dynamics of Genetic Programming Runs. In
Genetic Programming �eory and Practice XIII, R. Riolo, B. Worzel, M. Kotanchek,
and A. Kordon (Eds.). Springer.

246

http://scholarworks.umass.edu/dissertations_2/465/
http://scholarworks.umass.edu/dissertations_2/465/

	Abstract
	1 Introduction
	2 Example: Success vs. failure
	References

