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ABSTRACT

We present a Genetic Algorithm that we developed in order to ad-

dress computationally expensive optimization problems. In order

to accelerate this algorithm, we establish, generation a�er genera-

tion, quadratic approximations of the �tness in the close neighbor-

hood of the best-so-far individual. We then inject in the population

an individual that corresponds to the optimum of this approxima-

tion. We also introduce a modi�ed mutation operator that acts on

randomly-shi�ed Gray codes. We show that these techniques lead

to the global optimum of typical benchmark problems in 5, 10 and

20 dimensions with a probability of success in one run of the order

of 95-97% and an average number of �tness evaluations of the or-

der of 400−750×n, where n refers to the dimension of the problem.
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1 INTRODUCTION

For optimization problems that are computationally expensive, it

is desirable to determine the global optimum ideally by a single run

of the genetic algorithm and with a reduced number of �tness eval-

uations. We can guide the algorithm to promising directions and

accelerate the re�nement of the �nal solution by analyzing, genera-

tion a�er generation, the data collected by the algorithm (Memetic

Algorithms). Despite this guidance, the ability of the genetic al-

gorithm to make appropriate transitions in the decision variable
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space can remain arti�cially di�cult if these transitions require

too many bit changes. �is issue can be addressed by introducing

a modi�ed mutation operator that acts on randomly-shi�ed ver-

sions of the Gray code. �ese ideas are developed in this article.

2 DESCRIPTION OF THE ALGORITHM

We want to determine the global minimum of f = f (x1, . . . xn ),
where xi ∈ [xmin

i ,xmax
i ] with a discretization step ∆xi . �e vari-

ables are represented by xi = xmin
i + 〈gene i〉×∆xi , where 〈gene i〉

∈ [0, 2ni − 1] with ni the number of bits in a gene and nbits =
∑n
i=1 ni the total number of bits in a DNA.We use the Gray code as

reference encoding scheme. A description of our algorithm can be

found in [1, 2]. Wework here with a population ofnpop=50 individ-

uals. We start with random individuals. We evaluate their �tness

and sort the population from the best individual to the worst. �e

worst nrand = 0.1 × npop × (1 − p) individuals are replaced by ran-

dom individuals (p = |s − 0.5|/0.5, with s the fraction of bits in the

population whose value is identical to the best individual); they are

transferred to the next generation. �e remainingN = npop−nrand
individuals participate to the steps of selection, crossover and mu-

tation. We select N parents by a rank-based roule�e wheel selec-

tion. For any pair of parents, we de�ne two children for the next

generation either (i) by a one-point crossover of the parents’ DNA

(probability of 70%), or (ii) by a simple replication of the parents.

�e children obtained by crossover are subjected to amodi�ed mu-

tation operator, usingm = 0.95/nbits as mutation rate. We apply at

this point a local optimization step. We �nally evaluate the �tness

of all individuals scheduled for the next generation. We sort the

population, apply elitism and continue iteratively until a termina-

tion criteria is met. We keep a record with all �tness evaluations

in order to avoid any duplication of these evaluations.

Local Optimization: We select collected data points ®x for which

maxi
|xi−xi,ref |

∆xi
≤ W , where ®xref refers to the best-so-far solution

andW to the width of this selection. We then approximate these

data by f (®x) = a0 + ®A1. ®X + 1
2
®X .A2 ®X , where ®X = ∆

−1(®x − ®xref ) and
∆ = diag[∆x1, . . . ,∆xn]. �e coe�cients a0, ®A1 and A2 are deter-

mined by a singular-value-decomposition method [2]. W ensures

that the number of data considered is at least twice the number of

coe�cients to determine. �e solution of ®∇f = 0 is then formally

given by ®x∗ = ®xref−∆A−1
2

®A1 = ®xref−∆
∑

k
®xk . ®A1

λk
®xk , whereA2 ®xk =

λk ®xk is the eigensystem of A2. In order to control numerical er-

rors, we use only eigenvalues λk for which |λk | ≥ 10 λmax

λmin
λmax ϵ ,

where ϵ = 10−10 is the relative accuracy of the �tness. If ®x∗ can
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Table 1: Test functions used for the benchmarking.

f1 =
∑n
i=1 x

2
i , xi ∈ [−5.12, 5.12], ∆xi = 0.01

f2 =
∑n
i=1(

∑i
j=1 x j )2, xi ∈ [−65.5, 65.5], ∆xi = 0.1

f3 =
∑n−1
i=1 [100 (xi+1 − x2i )2 + (1 − xi )2],

xi ∈ [−2.05, 2.05], ∆xi = 0.0025

f4 = n(x1 − 1)2 +∑n
i=2(2x2i − xi−1)2, xi ∈ [0, 10], ∆xi = 0.0025

f5 = −Πn
i=1 cos(xi )2 exp(−x2i /10), xi ∈ [−5, 5], ∆xi = 0.01

f6 = −∑n
i=1 xi sin(

√

|xi |), xi ∈ [−500, 500], ∆xi = 1

f7 = sin2(πw1) +
∑n−1
i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)]

+(wn − 1)2[1 + sin2(2πwn )],wi = 1 + (xi − 1)/4,
xi ∈ [−10, 10], ∆xi = 0.01

f8 = 10 n +
∑n
i=1(x2i − 10 cos(2πxi )), xi ∈ [−5, 5], ∆xi = 0.01

f9 = −a exp
(

−b
√

1
n

∑n
i=1 x

2
i

)

− exp
(

1
n

∑n
i=1 cos(cxi )

)

+ a + e ,

a = 20,b = 0.2, c = 2π , xi ∈ [−32.8, 32.8], ∆xi = 0.025

f10 = 1 +
∑n
i=1

x 2
i

4000 −∏n
i=1 cos(xi/

√
i),

xi ∈ [−600, 600], ∆xi = 0.25

be accepted, it replaces the last individual scheduled for the next

generation. We try otherwise up to 3 times by increasingW .

Modi�edmutation operator: �e displacements generated bymu-

tations depend arti�cially on the coding considered. In order to

allow a wider range of displacements and help the genetic algo-

rithm to escape local optima, we apply mutations on the encoding

obtained with a randomly-shi�ed version of the Gray code [4]. �e

result is then translated back to the original Gray code (reference

encoding). �e shi� introduced in the Gray code is speci�c to each

gene. It is chosen in the range [0, 2ni − 1]. It is identical for all

individuals in the population. It is reset at each generation.

3 RESULTS

We are interested in a class of problems for which

(xmax
i − xmin

i )/∆xi ∼ 1000. We also consider that the global opti-

mum is found if the objective function is within a margin ∆ftarget
of 10−4 compared to the exact solution [1, 2]. Our objective is to

determine the global optimum with a high chance of success in

one run and with a reduced number of �tness evaluations. In or-

der to test our algorithm in these conditions, we consider typical

benchmark problems in 5, 10 and 20 dimensions (see Table 1). We

run the algorithm 500 times on each test function in order to mea-

sure the probability P(∆ftarget) with which the target ∆ftarget is

reached by a single run. We also measure the average number of

�tness evaluations 〈neval〉 required to reach this target [3]. We

use for this testing a maximum of 30 × nbits generations. �e al-

gorithm is interrupted if (i) there is no improvement of the best

�tness in the last 1.5×nbits generations, (ii) the mean value of the

genetic similarity s over the last 1.5 × nbits generations is higher

than 1−3m, (iii) s ≥ 1−m, or (iv) the number of �tness evaluations

exceeds 10, 000 × n. �e results are presented in Table 2. �e dif-

ferent columns indicate the results obtained when considering/not

considering (i) local optimizations based on quadratic approxima-

tions of the �tness, and (ii) a modi�ed mutation operator that acts

on randomly-shi�ed Gray codes.

Table 2: Benchmark results. P(∆ftarget) represents the prob-

ability to reach the target ∆ftarget = 10−4 by a single run.

〈neval〉 is the average number of �tness evaluations required

to reach this target. #fct(P ≥10%) is the number of functions

for which the target was reached at least once in ten runs.

Local Optimizations no no yes yes

Gray code shi�ed no yes no yes

n = 5 P(∆ftarget) 60.1% 76.6% 79.9% 95.5%

〈neval〉 12,430 10,587 2,150 1,812

#fct(P ≥10%) 8/10 8/10 all all

n = 10 P(∆ftarget) 39.3% 72.4% 65.8% 97.2%

〈neval〉 47,895 27,722 6,713 4,344

#fct(P ≥10%) 5/10 8/10 8/10 all

n = 20 P(∆ftarget) 25.3% 72.8% 50.6% 96.7%

〈neval〉 175,439 67,119 28,983 14,819

#fct(P ≥10%) 3/10 8/10 6/10 all

4 CONCLUSIONS

�is article shows that the performance of genetic algorithms can

be boosted by local optimizations based on quadratic approxima-

tions of the �tness1 and by using a modi�ed mutation operator

that acts on randomly-shi�ed Gray codes. �e results show that a

target accuracy of 10−4 on the global optimum of the functions con-

sidered can be reached with a probability of success in one run of

the order of 95-97%, instead of 60% (n=5), 39% (n=10) and 25% (n=20)

when these techniques are not used. �ese results were tested for

statistical signi�cance.2 �e average number of �tness evaluations

required to reach this target accuracy is around 400−750×n, which
compares well with state-of-the-art algorithms.3
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