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ABSTRACT
Feature selection concerns the task of �nding the subset of features
that are most relevant to some speci�c problem in the context of
machine learning. During the last years, the problem of feature
selection has been modeled as an optimization task, where the
idea is to �nd the subset of features that maximize some �tness
function, which can be a given classi�er’s accuracy or even some
measure concerning the samples’ separability in the feature space,
for instance. In this paper, we introduced Geometric Semantic
Genetic Programming (GSGP) in the context of feature selection,
and we experimentally showed it can work properly with both
conic and non-conic �tness landscapes.
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1 INTRODUCTION
Machine learning techniques have been the forerunner of several
advances in Computer Science and application-driven areas, which
range from medical image understanding to video summarization,
just to name a few. However, even the most accurate approaches
may have their performance degraded due to the high dimensional-
ity of the datasets. In this context, feature selection arises to mitigate
that problem by selecting the subset of the most representative fea-
tures.

A Binary Flower Pollination Algorithm was presented for fea-
ture selection purposes and compared against Particle Swarm
Optimization (PSO), Harmony Search and Fire�y Algorithm [11].
Evolutionary-oriented optimization techniques have been also used
to �nd out the most representative features. Yang and Honavar [14],
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for instance, used Genetic Algorithms together with Neural Net-
works for feature selection purposes. Genetic Programming (GP) [5]
was also employed for the very same purpose, either representing
classi�ers instanced with di�erent subsets of features [6, 10] or
using a two-stage approach [3].

Moreover, Geometric Semantic Genetic Programming (GSGP) [7]
has been employed to a number of problems very recently, such as
electoral redistricting problem [2] and real-life applications [12].
However, as far as we are concerned, GSGP has never been con-
sidered in the context of feature selection up to date, which turns
out to be the main contribution of this paper. One strong point of
geometric semantic operators concerns their ability in inducing
unimodal �tness landscapes on some problems where one knows
the matching between the input and the output data.

2 METHODOLOGY
�e proposed approach aims at selecting the set of features that
minimizes the classi�cation error of some supervised classi�er over
the validation set (i.e. the so-called wrapper approach). Although
one can use any supervised pa�ern recognition technique, we opted
to use the Optimum-Path Forest (OPF) classi�er [8, 9], since it is
parameterless and fast for training. �is procedure is hereina�er
called “Experiment A”. However, “Experiment A” does not guaran-
tee a unimodal �tness landscape, since the �tness function is not
based on the Hamming distance. �e main idea of “Experiment B”
is to �nd the best subset of features as the one that maximizes the
OPF accuracy over a validation set. �e best subset is considered
among all possible subsets, say 2n , where n stands for the number
of features. Finally, the best subset is taken as our gold standard,
and the �tness function now aims at minimizing the Hamming
distance between the current solution and that gold standard.

2.1 Datasets
Table 1 describes the datasets used in this work.

# Training Set # Testing Set # Features
Le�er [4] 15,000 5,000 16

Pendigits [1] 7,494 3,498 16
Segment [4] 1,155 1155 19
Vehicle [4] 423 423 18

Table 1: Datasets considered in the work.
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2.2 Experimental Setup
In this work, we compared Geometric Semantic Genetic Program-
ming against three approaches for feature selection purposes, say
that: Bat Algorithm (BA), GP and PSO. In order to provide a sta-
tistical analysis by means of Wilcoxon signed-rank test [13], we
conducted a k-fold cross-validation with 15 runnings for both ex-
periments (Experiment “A” and Experiment “B”). We employed 15
agents over 25 iterations for convergence considering all techniques
and experiments. In regard to the source-code, we used the opti-
mization library LibOPT1, and the development library LibDEV2.
Concerning the OPF classi�er, we used the LibOPF library3.

3 EXPERIMENTS
In this section, we present the results concerning the experiment
that holds the assumption the �tness landscape is unimodal. In
regard to this experiment, we need to �nd out the gold standard by
means of an exhaustive search over 2n possibilities, where n stands
for the number of features. As aforementioned in Section 2, the idea
is to �nd out the subset of features that minimizes the Hamming
distance with respect to the gold standard. Table 2 presents the
average Hamming distance concerning the aforementioned datasets
and the techniques used. �e best results are in bold according to
Wilcoxon statistical test. In this situation, the technique is be�er
when the distance is smaller.

BA GP GSGP PSO
Le�er 0.71 2.02 1.87 0.74

Pendigits 2.90 4.22 4.20 2.91
Segment 2.50 3.34 3.47 2.66
Vehicle 2.07 2.95 2.88 1.99

Table 2: Average Hamming distance considering the
datasets used.

One can observe that BA and PSO obtained the best results,
followed by GSGP and GP. However, an interesting point concerns
a direct comparison between GSGP and naı̈ve GP, given the �rst
one obtained slightly be�er results.

We performed an additional experiment to evaluate GSGP over
both non-unimodal and unimodal �tness landscapes. Table 3
presents a comparison between GSGP under “Experiment A” (GSGP-
A) and GSGSP under “Experiment B” (GSGP-B), being the best
techniques in bold according to Wilcoxon statistical test. In this
experiment, we considered the best subset of features selected by
both experiments to train and evaluate an OPF classi�er in order to
assess GSGP behavior under that di�erent conditions, i.e., we would
like to assess whether GSGP would bene�t or not from unimodal
�tness landscapes concerning the problem of feature selection. One
can observe that both GSGP-based techniques obtained similar re-
sults in 2 out of 4 datasets, being GSGP over unimodal �tness the
best one in all situations, which was expected, since we assume the
operators are “really semantic”.

4 CONCLUSIONS
In this paper, we tackled the problem of feature selection as an
evolutionary optimization problem. We showed GSGP can obtain
1h�ps://github.com/jppbsi/LibOPT
2h�ps://github.com/jppbsi/LibDEV
3h�ps://github.com/jppbsi/LibOPF

GSGP-A GSGP-B
Le�er 93.37% 97.01%

Pendigits 97.10% 97.74%
Segment 97.43% 97.53%
Vehicle 76.58% 78.74%

Table 3: GSGP comparison between “ExperimentA” and “Ex-
periment B”.

very much reasonable results in 4 public datasets without the guar-
antee one has unimodal �tness landscapes (GSGP-A). A second
experiment (GSGP-B) used four datasets in order to obtain a gold
standard to be used as the �tness function. In this case, we hold
the assumption of using semantic operators. In 2 out of 4 datasets,
GSGP-A obtained similar results to GSGP-B, being the la�er one
the best in all four datasets, as expected. We believe the results
presented in this paper can make even broader the applications
of GSGP. In regard to future works, we intend to compare GSGP
with di�erent meta-heuristic techniques, as well as to present a
quaternion-based version of GSGP.
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