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ABSTRACT
In this paper the MOEA/D-G algorithm is proposed which is a mod-
i�cation of the MOEA/D algorithm using Gaussian distributions
to determine the probability with which neighbours of a given
subproblem are selected as parents of new specimens assigned to
this subproblem. �e proposed method is applied to the Multiobjec-
tive Travelling Salesman Problem (MOTSP). Solutions found by the
MOEA/D-G algorithm have a be�er quality than those found by
the original MOEA/D version. Also, given equal computation time,
all versions of the MOEA/D outperform the NSGA-II algorithm.
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1 INTRODUCTION
�e Multiobjective Evolutionary Algorithm based on Decomposi-
tion (MOEA/D) [2] uses a set of weight vectors {λ(j)}j=1, ...,Npop

(where Npop is the population size) to decompose a multiobjective
optimization problem to a set of single objective problems. A neigh-
bourhood structure is de�ned on these subproblems and parent
selection for the j-th subproblem is performed with a probability
δ from its neighbourhood B(j) containing T specimens, and with
a probability 1 − δ from the entire population. Because a typical
value of the δ parameter is δ = 0.9 this mechanism prefers parent
selection from ”similar” subproblems, but also allows exchanging
information with the general population. In the original MOEA/D
the probability of selecting a given specimen as a parent changes
abruptly between the T neighbours and the rest of the population.
In the MOEA/D-G algorithm the parent selection mechanism uses
a Gaussian distribution for determining the probability of selecting
a particular specimen.
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2 THE MOEA/D-G ALGORITHM
In the MOEA/D-G algorithm parents are selected from the entire
populationwith a probability determined by a Gaussian distribution.
Parent selection in a biobjective case is performed as presented
in Algorithm 1. �e gsamp() function draws a random number
from a Gaussian distribution with given parameters. �e round()
function rounds a given real number to the nearest integer. In
a multiobjective case withm > 2 objectives this selection procedure
can be performed by drawing a vector ofm − 1 real numbers from
an (m − 1)-dimensional Gaussian distribution and by adding the
rounded values to coordinates of the subproblem for which to select
parents on am − 1 dimensional grid of weight vectors.

Algorithm 1 Procedure used for selecting parents for the j-th
subproblem.

IN: j - the number of the subproblem
σ - the standard deviation of the Gaussian distribution
Ns - the number of parents to select

OUT: S - the set of indices of the selected parents
S := ∅
while |S | < Ns do

do
n := round(gsamp(0,σ ))
n := n + j

while ((n < 1) or (n > Npop ) or (n ∈ S))
S := S ∪ {n}

end while

In the MOEA/D the T parameter in�uences both parent selec-
tion (additionally parameterized by the probability δ ) and solution
replacement (additionally parameterized bynr - the maximum num-
ber of replaced specimens). In the MOEA/D-G the neighbourhood
of size T is used for solution replacement in exactly the same way
as in the original MOEA/D, so both the T and the nr parameters
are used in this process. On the other hand the parent selection
procedure in the MOEA/D-G does not use the T nor δ parameters,
because the standard deviation σ is used instead. �erefore, in
the MOEA/D-G the parameters T and nr control solution replace-
ment and σ controls parent selection, so these two aspects can be
parameterized independently as opposed to the MOEA/D.

When the parent selection procedure proposed in this paper is
used, the probability of selecting a certain specimen as a parent
changes smoothly with the distance between subproblems. In Fig-
ure 1 the distribution used by the original MOEA/D is presented
along with the distribution used by MOEA/D-G. Clearly, MOEA/D-
G uses higher probabilities than MOEA/D for selecting parents
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MOEA/D (δ=0.9, T=20)

MOEA/D−G (σ=3.0)

Figure 1: Probabilities of selecting neighbours as parents for
a subproblem located in the center of the graph for popula-
tion size Npop = 100. MOEA/D with parameters δ = 0.9 and
T = 20 and MOEA/D-G with σ = 3.0.

from nearby subproblems and allows selecting distant specimens,
but with low probabilities.

3 EXPERIMENTS AND RESULTS
�e proposed algorithm was tested on a suite of kro〈N〉 instances
of the Multiobjective Travelling Salesman Problem (MOTSP) [1]
with the number of cities N = 100, . . . , 750. In this problem each
solution is a permutation of numbers 1, . . . ,N which represents the
order in which N cities are visited. �e results obtained using the
MOEA/D-G were compared to those obtained using the standard
version of the MOEA/D algorithm and the NSGA-II algorithm. All
the algorithms used the Inver-Over operator [3] and a 2-opt local
search [4]. �e results were compared with respect to computation
time: 600s for N = 100, 1 800s for N = 150, 3 600s for N = 200,
10 800s for N = 300, 32 400s for N = 400, 72 000s for N = 500
and 345 600s for N = 750. �e population size was Npop = 100. To
assess the in�uence of the σ parameter on the quality of the results,
�ve di�erent values 1.0, 2.0, 3.0, 4.0, and 5.0 were tested. Also,
three di�erent pairs of values were assigned to the neighbourhood
size T and nr - the maximum number of solutions replaced by
a child solution, namely (T = 5,nr = 2), (T = 20,nr = 2) and
(T = 40,nr = 4). In the experiments a value of δ = 0.9 was
used for the MOEA/D algorithm. Pareto fronts produced by the
tested algorithms were compared using the hypervolume indicator
(HV) introduced in [5]. During the tests each algorithm with each
parameter set was run on each test instance 30 times and themedian
HV from these 30 runs was calculated. �e number of times the
best result was obtained by MOEA/D-G with σ = 1.0, . . . , 5.0 was
18, 2, 4, 3 and 0 respectively. �e MOEA/D and the NSGA-II never
produced the best result. Table 1 shows the minimum, average and
maximum ratio of median hypervolumes a�ained by the algorithms.

From the presented results it is clear, that the MOEA/D-G algo-
rithm outperforms both the original MOEA/D and the NSGA-II. To
verify the hypothesis that the observed advantage is statistically
signi�cant, statistical testing was performed using the Wilcoxon

Table 1: Min, avg and max ratio of median hypervolumes.

HVMOEA/D/HVNSGA-II
HVMOEA/D-G/HVMOEA/D

σ = 1.0 σ = 2.0 σ = 3.0 σ = 4.0 σ = 5.0
Min 1.09 1.03 1.03 1.04 1.03 1.03
Avg 2.31 1.12 1.11 1.10 1.10 1.09
Max 4.10 1.22 1.20 1.19 1.18 1.16

rank test. �e null hypothesis in this test was the equality of me-
dian results obtained by each MOEA/D-G variant (e.g. MOEA/D-G
(σ = 1.0)) and a comparison method (MOEA/D, NSGA-II). In every
case the obtained p-value was less than 2 · 10−6. Such low p-values
con�rm that the di�erences in median values obtained by the al-
gorithms are signi�cant and so is the observed advantage of the
MOEA/D-G over the MOEA/D and NSGA-II. Given the very low
p-values obtained in all individual cases the family-wise corrected
value is also well below 0.01. �e relationship between the stan-
dard deviation σ of the Gaussian distribution and the quality of the
results depends on the problem instance size. For N = 100 cities
the best result was obtained for σ ∈ [2, 4]. For larger instances the
best result was always obtained for σ = 1.0 for which it is the most
probable to select parents from nearby subproblems. On the other
hand for all test instances except kroAB100 the best result was
achieved for T = 40. �is may indicate the fact that incorporating
parts of solutions found for distant subproblems bene�ts the search
process, but the probability of doing so must be decreased with the
distance, not kept constant as in the original MOEA/D.

4 CONCLUSION
In this paper a new variant of the MOEA/D algorithm is studied that
uses a Gaussian distribution instead of a preset neighbourhood to
select parents for producing new solutions for the subproblems. �e
proposed algorithm was tested on nine instances of the Multiobjec-
tive Travelling Salesman Problem. �e MOEA/D-G algorithm per-
formed be�er than the original version of the MOEA/D algorithm
and the NSGA-II on all the tested problems with all parameters
se�ings that were used in the experiments.
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