
Modeling Optimization Algorithm Runtime Behavior and its
Applications

Qi Qi
UBRI, School of Computer Science

and Technology
University of Science and Technology

of China (USTC)
Hefei, Anhui, China 230027

qqi@mail.ustc.edu.cn

Thomas Weise∗

Institute of Applied Optimization
Faculty of Computer Science and
Technology, Hefei University
Hefei, Anhui, China 230601

tweise@hfuu.edu.cn

Bin Li
Department of Electronic Engineering

and Information Sciences
School of Information Science and

Technology, USTC
Hefei, Anhui, China 230027

binli@ustc.edu.cn

ABSTRACT

We model the time-quality relationship of optimization processes

by either itting curves or training artiicial neural networks. On

the example of the MAX-SAT problem, we investigate 1) the inter-

pretation of itted curves based on the values of their parameters

using their ixed semantics, 2) the classiication of performance

measurements to algorithms, i.e., the detection of which algorithm

was used to solve a given problem just by its runtime behavior,

3) the prediction of how an algorithm may perform on a yet-unseen

problem with yet-unseen features based on its performance on

other problems, and 4) the prediction of future progress based on

models itted to data measured so far.

ACM Reference format:

Qi Qi, Thomas Weise, and Bin Li. 2017. Modeling Optimization Algorithm

Runtime Behavior and its Applications. In Proceedings of GECCO ’17 Com-

panion, Berlin, Germany, July 15-19, 2017, 2 pages.

DOI: http://dx.doi.org/10.1145/3067695.3076042

1 INTRODUCTION & APPROACH

Most of the available optimization algorithms are anytime algo-

rithms [2] which can provide an approximate solution for a prob-

lem at any point during their execution. When applying such an

algorithm to a problem instance, such information can be collected

as a sequence of tuples (ti ,qi) relating an elapsed amount ti of time

to the quality qi of the best solution discovered within ti . We it

curves and train artiicial neural networks (ANNs) to such time-

quality relationships. We show that 1) a classiier can be trained

that, with high accuracy, can determine which algorithm was used

to solve an unknown problem based on the parameters of (itted-

curve) model describing the algorithm behavior (and the model

residuals), 2) how the complete runtime behavior of algorithms

can be predicted on yet-unseen problem instances by predicting

model parameters, 3) how the future behavior of an algorithm can

be forecasted by a model itted on its behavior up to now.

∗corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3076042

Let us irst describe our modeling approach. The quality of a

model M be its itting residual Φ(M) = 1
ns

∑ns
i=1

(M (ti)−qi)
2

qi
, i.e.,

the weigted mean square error over all ns measured time-quality

samples. Such time-quality relationships in optimization processes

often resemble sigmoidal curves and we test four such models:

Name Shortcut Formula

Logistic Model LGM A + B/(1 + exp (C ∗ ln (t) + D))

Decay Model DCM A + B ∗ exp
(

C ∗ tD
)

Exp-Linear Model ELM A + B ∗ exp (C ∗ ln (t + D))

Gompertz Model GPM A + B ∗ exp (C ∗ exp (D ∗ t))

All models have four parameters and two curve shapes deter-

mined mainly by the sign of parameter B: Shapes with positive

B are named with suix łPž and those with negative B with suf-

ix łN ž. The standard approach for non-linear curve itting is the

Levenberg-Marquardt algorithm. Due to the special characteristics

of our models and data, multiple restarts and an intelligent initial-

ization strategy are required. ANNs are another technology suitable

for condensing the time-quality relationship of optimization pro-

cesses into mathematical functions. We use feed-forward ANNs

with one input neuron, a single hidden layer with 6 neurons, and

one output neuron, i.e., 3-layer perceptrons.

2 CASE STUDY: MAX-SAT

We use the Maximum Satisiability Problem (MAX-SAT) with n

variables as case study. We investigate six setups of a trivial hill

climber with two parameters, the search operator (1, 2, orm-bit lips)

and whether or not restarts are applied. We apply the algorithms

to 10 groups of 10 selected benchmark instances with ixed n from

SATLib [1]. We perform 20 independent runs for each algorithm-

instance combination and collect a (ti ,qi)-sample whenever a run

makes an improvement as well as at the end of the runs, measuring

time in Function Evaluations (FEs). We ind that the algorithm

setups using restarts are slower (due to a restart policy intentionally

designed that way), but can solve up to 90% of the problem instances

while those without solve 40% at most. The search operation has

much smaller inluence.

The success rate (SR) be the fraction of problem instances for

which a modelM with Φ(M) ≤ 4 was produced. Our model itting

procedure reaches SR > 90% for all instances, algorithms, and

models, except for model LGMN and ELMN, while ANNs have

SR = 95.86%. The LGMP models can best represent the algorithm

behavior, followed by ELMP.

115

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Qi Qi, Thomas Weise, and Bin Li

2.1 Model Parameters vs. Instance Features

We take a look at the LGMP models and observe that the algorithm

setups using restarts have diferent model parameter settings than

those without. Their parameterA is smaller, whichmeans the model

predicts better asymptotic inal results for t → ∞. Parameter B has

an upward trend for all algorithms with a rising number of vari-

ables/clauses of the MAX-SAT instances, which is to be expected

since the random initial solutions likely contain more false clauses

in larger instances and, hence q1 − qns grows. Parameters C and

D both approximately have a negative linear association with the

instances scale under the same algorithm: The time when the algo-

rithms łacceleratež after their łinitialization phasesž increases and

their progress speed decreases with rising instance scale.

2.2 Algorithm and Instance Classiication

We ask the question Given the data points collected from a run of

an unknown algorithm setup on an unknown problem instance, is

it possible to determine the algorithm which was used in the run?

This corresponds to a deep learning application in form of a clas-

siication problem where each of the previously obtained models

is labeled with the algorithm setup it belongs to. Each element to

be classiied has ive features, namely A, B, C , D, and the itting

residual Φ, which can be measured without knowing the algorithm

setup and problem instance. We use 80% of the models as training

data and the remaining 20% as test data. We train three widely used

classiiers, ANN with back propagation, Support Vector Machine

(SVM) with linear kernel, and Gradient Boosting Tree, using 10-

fold cross-validation. We ind that SVMs perform slightly better

than the other classiiers. Except ANN on ELMN, all three methods

always have an accuracy well above 74%. This is astonishing, as the

classiiers only receive the model parameters and model residuals

as input, but have no information about the problem instance to

which the algorithms were applied. In other words, it is possible,

with high conidence, to detect which algorithm was used in an

experiment on an unknown problem instance!

2.3 Model Parameter Prediction

The complementary question to data forensics is model prediction.

We know that the model parameters are clearly related to the in-

stance features. We want to obtain an ANN that predicts the model

parameters based on the instance scale, i.e., the number n of vari-

ables in a MAX-SAT instance. We therefore employ an ANN with a

linear activation function and use grid search for weight decay and

the number of neurons in the hidden layer, using the metric Root

Mean Square Error (RMSE) to choose the optimal model.

We remove the ten uf150-645 and the ten uf250-1065 instances

from our dataset. We conirm that a ANN (1 hidden layer with 6

neurons) trained on the rest can compute parameter values close

to the average of the actual parameters on test data. Even better,

both the predicted and the average (actual) models yield a success

rate of SR = 98.3%. In other words, the predicted behavior models

are not worse than the average of the actual models! The predicted

models have a high accuracy and are not much worse on on the

test- than on the training data. This means that we can predict the

complete runtime behavior of an algorithm on an unknown problem

instance with reasonable accuracy. Given the number of variables of

a MAX-SAT problem, we can predict how long a 2-lip hill climber

with restarts would need to ind a solution with, e.g., zero, one, two

or ten false clauses.

2.4 Prediction of Future Progress

Assume that we have a (slowly-running) optimization process solv-

ing a given problem. While the process is running, we could nat-

urally remember its progress and even it models now and then.

Based on the models, we could try to predict how the algorithm will

further progress or where the second knee point in the ∼-shaped
model is after which signiicant further progress would be unlikely.

As we propose to predict the future progress of an ongoing algo-

rithm run, the modeling and prediction needs to operate on single

runs.

In order to test our idea, we set two limit values for the run-

time t : traint and testt . All data points with t ≤ traint of a run

are used for training, those with traint < t ≤ testt are used for

testing, and those with t > testt are ignored, if any. The setting

(traint , testt) = (50, 100) stands for predicting the complete algo-

rithm behavior during 50 FEs in the future based on the data points

collected during the irst 50 FEs. This can be done with a very small

itting residual (containing square errors), even though any continu-

ous model could hardly be expected to exactly predict an algorithm

whose approximation quality changes in discrete steps in a ran-

domized fashion. Increasing the prediction interval to nine times

the training interval in setting (10, 100) leads to an increase in the

residuals, but is still often below half of the limit which we consider

as successful based on curve similarity. Scaling the time range up

to (100, 1000) interestingly leads to an (still acceptable) increase in

Φ, probably because the overall number of points increases and the

discrete nature of the changes in measured quality. Here, the ANN

models often have a smaller residual than the curve-based ones,

but sometimes also are outperformed by them.

3 CONCLUSION

We provide two easy and general methods to represent the time-

solution quality relationships of anytime algorithms, function it-

ting and ANN training. We show that such performance models

have a wide variety of deep learning applications and we prove that

these applications are viable and easy-to-implement with a detailed

case study on the MAX-SAT problem.

Acknowledgments We acknowledge support from the Na-

tional Natural Science Foundation of China under Grants 61673359,

61150110488, and 71520107002 and the Fundamental Research

Funds for the Central Universities.

REFERENCES
[1] Holger H. Hoos and Thomas Stützle. 2000. SATLIB: An Online Resource for

Research on SAT. In SAT2000 ś Highlights of Satisiability Research in the Year
2000. IOS Press, Amsterdam, The Netherlands, 283ś292.

[2] Thomas Weise, Raymond Chiong, Ke Tang, Jörg Lässig, Shigeyoshi Tsutsui,
Wenxiang Chen, Zbigniew Michalewicz, and Xin Yao. 2014. Benchmarking Opti-
mization Algorithms: An Open Source Framework for the Traveling Salesman
Problem. IEEE Computational Intelligence Magazine 9, 3 (2014), 40ś52. DOI:

https://doi.org/10.1109/MCI.2014.2326101

116

https://doi.org/10.1109/MCI.2014.2326101

	Abstract
	1 Introduction & Approach
	2 Case Study: MAX-SAT
	2.1 Model Parameters vs. Instance Features
	2.2 Algorithm and Instance Classification
	2.3 Model Parameter Prediction
	2.4 Prediction of Future Progress

	3 Conclusion
	References

