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ABSTRACT
Exploratory Landscape Analysis are data driven methods used for
automated algorithm selection in continuous black-box optimiza-
tion. Most of these methods follow strong assumptions that limit
their characterization power, or loose information by compressing
the data into a few scalar features. A more �exible approach is to
avoid explicit measuring and comparing of speci�c structures. In
this paper we present a proof-of-concept for a more general method,
which produces non-parametric models of the space of problems.
Using non-metric multidimensional scaling, we generate synthetic
features for each problem, which could replace or complement the
existing ones. We demonstrate approaches to produce algorithm re-
commendations and visual representations of the space. To validate
the model, we compare our results with those obtained through
existing methods, which show that our models have competitive
performance.

CCS CONCEPTS
• Mathematics of computing → Nonparametric representa-
tions; Continuous optimization;

KEYWORDS
Black-box optimization, Continuous optimization, Exploratory lands-
cape analysis

ACM Reference format:
Mario A. Muñoz and Kate Smith-Miles. 2017. Non-parametric model of the
space of continuous black-box optimization problems. In Proceedings of
GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017, 2 pages.
DOI: http://dx.doi.org/10.1145/3067695.3075971

1 METHOD
The goal in a continuous black-box optimization (BBO) problem is
to minimize a cost function f : X → Y where X ⊂ RD is the input
space, Y ⊂ R is the output space, and D ∈ N∗ is the dimension of
the problem. A candidate solution x ∈ X is a D-dimensional vector,
and y ∈ Y is the candidate’s cost. Let xmin and xmax be vectors
composed of the lower and upper bounds of X respectively, and
ϱmax = ‖xmax − xmin‖. Let φ = yi −yj , and ϱ =



xi − xj


. A length

scale r is de�ned as |φ | /ϱ [6].
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Assume an uninformed random search algorithm which con-
siders the current candidate, xi , to be the origin of X. Therefore,
the coordinates of any other candidate, xj , can be expressed in D-
spherical coordinates as [ϱ,θ1, . . . ,θD−1]>, where θi ∈ [0, 2π ) , i =
1 . . . ,D − 1. Let R ∈ [0, ϱmax), Θi ∈ [0, 2π ) and Φ be random va-
riables such that R de�nes the size of a step, Θi its direction, and
Φ the change of cost due to the step. Assume that the probability
of taking a step of size R in any direction is constant. As such, we
ignore the values of θi . Let p (φ, ϱ) be the probability that a step of
size ϱ produces a change in cost of magnitude φ for the function f .

Consider a second cost function д : X → Y with q (φ, ϱ) being
the probability that a step of size ϱ produces a change in cost of
magnitude φ. Then, the amount of information lost when q (φ, ϱ) is
used to approximate p (φ, ϱ) is given by the Kullback-Leiber (KL)
divergence [2]. The KL-divergence is not a true metric: it is non-
symmetric, zero i� p = q almost everywhere, and unde�ned if q = 0
for anyφ and ϱ. Ifp = 0, then 0 ln 0 ≡ 0. A symmetric alternative, the
J -divergence, is de�ned as D J (p‖q) = DKL (p‖q) + DKL (q‖p) [6].
However, it disregards the possibility that p or q are equal to zero
for some values of φ or ϱ, resulting in an unde�ned J -divergence.
Therefore, we de�ne a symmetric divergence, δ , as δ = DKL (p‖q)
if p , q ∧ DKL (q‖p) ≤ 0, δ = DKL (q‖p) if p , q ∧ DKL (p‖q) ≤ 0,
and δ = 0.5D J (p‖q) otherwise. To reduce the risk of unde�ned
divergences due to q = 0 for some values, ϱ is scaled with 1/ϱmax
andφ is normalized to variance one. TheKL-divergence is estimated
using the nearest neighbor with variable neighborhood method
(KL_kNN_kiTi) [9].

Let { f1, . . . , fm } be a set of cost functions represented by their
joint pdfs {p1, . . . ,pm }. Let ∆ be the matrix of cross divergences
between {p1, . . . ,pm }, which de�nes the relationships between
functions as a manifold embedded in a M-dimensional space. Ho-
wever ∆ cannot be used alongside other ELA methods to �t a pre-
diction model. Therefore, we generate am ×M matrix of synthetic
features, Ψ. We use non-metric multidimensional scaling (NMDS)
minimizing the Kruskal’s Stress (1) to generate Ψ. To �nd a value
of M , ten randomly seeded iterations of NMDS are carried out for
M ∈ [1, 30], until the change in Stress (1) stabilizes. We follow a si-
milar procedure to generate synthetic features from the distribution
of r as de�ned by [6], which we call Υ.

2 EXPERIMENTAL VALIDATION
As a representative subset of the space of continuous BBO problems,
we use the �rst 30 instances from the noiseless BBOB/COCO ben-
chmark set [1] at D = 2. We de�ne a binary performance measure
in which ‘0’ represents BFGS having lower expected running time
than BIPOP-CMA-ES and ‘1’ represents the opposite. To calculate ∆,
we take 2×102 sample points fromX using Latin hypercube design
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and evaluate it on each instance from the COCO benchmark. We
de�ne the matrix Λ as the comparison features [3–5, 7, 8]: (a) the
dispersion at 1%, D1%, (b) the adjusted coe�cient of determination
of a purely quadratic model R̄2

Q , (c) the ratio between the minimum
and the maximum absolute values of the quadratic term coe�cients
in the purely quadratic model,CN , (d) the signi�cance of �rst order,
ξ (1), (e) the skewness of the cost distribution, γ (Y), (f) the entropy
of the cost distribution, H (Y), (g) the number of peaks, PKS , (h) the
maximum information content, Hmax, (i) the mean cross-validation
error (MCVE) of a LDA at 10%, EL10, (j) the ratio between the MCVE
of a LDA and a QDA at 10%, LQ10, (k) the MCVE of a LDA at 25%,
EL25, (l) the ratio between the MCVE of a LDA and a QDA at 25%,
LQ25, and (m) the ratio between the MCVE of a LDA and a QDA at
50%, LQ50. All levelset features and PKS were scaled using log10,
and all features were standardized. These features are uncorrelated
between each other, and correlated to other features proposed in
the same references1.

Minimizing the Kruskal’s Stress (1) results in seven features for
Ψ, and four features for Υ. Testing the correlations between features,
we �nd thatψ1 is highly correlated with γ (Y) and PKS , andψ2 is
highly correlated with R̄2

Q . On the other hand,υ1 is highly correlated
with H (Y). No feature from Ψ is highly correlated to a feature from
Υ, which indicates that both approaches could complement each
other.

We �tted a SVM to predict whether BFGS is preferred over BIPOP-
CMA-ES, with seven feature sets: Λ, Ψ, Υ, {Ψ,Υ}, {Λ,Ψ}, {Λ,Υ}
and {Λ,Ψ,Υ}. For the last three feature sets, if two features have
absolute correlation higher than 0.7, we remove the feature from
Λ. We �ne tune the SVM and select the best features from each
set using 10-fold cross-validation, whose accuracy is 96.0% for Λ,
85.6% for Ψ, 92.6% for Υ, 95.7% for {Ψ,Υ}, 96.5% for {Λ,Ψ}, 97.4%
for {Λ,Υ}, and 97.6% for {Λ,Ψ,Υ}. Therefore, excepting the model
using only Ψ, all other models achieve a cross-validation accuracy
above 90%. This can be explained by the lack of representation
of H (Y) in Ψ, which by itself achieves an accuracy of 78.9%. By
including this information through Υ, the accuracy increases to
95.7%. This is comparable to Λ, which achieves an accuracy of 96.0%.
If all features can be calculated, it is possible to obtain the maximum
accuracy of 97.6%.

We employed t-SNE [10] to project the selected features from
Λ, {Ψ,Υ}, and {Λ,Ψ,Υ} into two dimensions, such that the rela-
tionships between problem instances can be visualized. From a
group of 30 iterations we selected the one with the lowest error.
Figure 1 show the results from the selected features of {Λ,Ψ,Υ}.
This �gure demonstrate how the non-parametric features produce
clearer clusters than Λ. For example, { f16, f21, f22, f23, f24} form
clusters in their own right at the top of the �gure.

3 LIMITATIONS ANDWAYS FORWARD
Our next steps are: (a) to test the method with problems of higher
dimensionalities; (b) to evaluate the e�ects of the sample size used
to calculate the divergences; (c) to test other algorithms to verify
the predictive power of the new features; and (d) to include some
amount of information about the direction of the step, which was

1Complete results are presented in an extended version of this paper, available at
http://users.monash.edu.au/~andresm/

Figure 1: Two dimensional projections of the selected featu-
res from {Λ,Ψ,Υ} obtained through t-SNE.

discarded by assuming that each candidate was the origin of the
input space. For the later issue, we could assume assuming the
existence of a hyper-plane described by the vectors representing
two candidates, e�ectively reducing the space to two dimensions.
A possible advantage of our method is its potential to generate an
statistical manifold. Through information geometry techniques we
could obtain a theoretically robust characterization method, which
could provide clues regarding how to transform the structure of a
problem so it can be quickly solved by a speci�c search algorithm.
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