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ABSTRACT
Genetic Algorithms (GAs) can �nd game parameters that �t a de-
signer’s requirements. An issue with this is the long time taken
to evaluate �tness, as this requires running the game many times.
Here we use �tness predictors, currently neural networks, to speed
up the process by reducing the number of �tness evaluations. �e
predictors are trained using data generated by the GA at runtime.
A�er training, the model is invoked to estimate the �tness of newly
created individuals. If the estimate is below a threshold, it is ac-
cepted. Otherwise, the original �tness function is invoked. We
have used this approach on Ms PacMan with promising results.
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1 INTRODUCTION
Genetic Algorithms (GAs) can �nd game parameters that �t a de-
signer’s requirements [5]. An issue with this is the long time taken
to evaluate �tness, as this requires running the game many times.
Here we use neural-network (NN) based predictors, trained at run-
time, to quickly estimate the �tness of individuals and to decide if
they should be evaluated.

Fitness approximation is an actively explored research area [1]
because in many problems �tness evaluation is expensive. For in-
stance, [4] used NNs to simulate the actual �tness evaluation in
the evolution of music using interactive genetic programming, to
reduce human e�ort. Also, NNs were used as surrogate models for
�tness evaluations to optimise radiotherapy treatment [2]. A GA,
with the help of the NN, was successful in �nding be�er solutions
compared to traditional methods used in practice. �e implementa-
tion used a pre-trained NN as a surrogate model which required
expert knowledge and data on the subject.
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2 METHODOLOGY
2.1 Ms Pacman
Ms PacMan is a single player game played on a 2–D board, where
the player controls the “PacMan” and has the goal of collecting as
many points as possible. �ere are 4 ghosts opposing the player. We
altered the game’s rules so that players win if they reach 1600 points.
So, players can have a win-rate associated to their performance.

To automate the control of the “PacMan”, an MCTS agent based
on work by Ikehata and Ito [3] was used. It is one of the best per-
forming agents available, but also very expensive computationally.

�e metric the game designer can assess is the win-rate, being
able to evolve a harder variation of the game by targeting a lower
win-rate, or an easier one by aiming for a higher win-rate.

�ere are 9 parameters evolved: the PacMan’s speed, the chasing
speeds of each of the 4 ghosts, as well as their �eeing speed.

�ere are two objectives in the �tness evaluation: the score
�tness and the parameter �tness. A�er running a number of games
using the modi�ed parameters, the resulting scores give us a score
�tness value (W ). �e parameter �tness (∆P ) is a a sum of the
absolute values of the parameters, representing how far the solution
is from the default game parameters.

Formally, the �tness function can bewri�en as: Fitness = W+∆P ,
where W = |WR − DWR| ×CW and ∆P =

∑n
i=0 |∆i | ×C∆. In the

score �tness component W , WR = win-rate (from 0 to 1), DWR =
desired win-rate, CW = win-rate weight. In the parameter �tness
component ∆P , ∆i = di�erence between the original ith parameter
and the evolved ith parameter, C∆ = parameter di�erence weight.
CW and C∆ are the values that the game designer can change to
give each �tness component a di�erent importance.

Here, DWR = 0.5, representing a win-rate of 50%, CW = 5000
and C∆ = 100. �is gives the two objectives similar relevance, as
|WR − DWR | can only be a value between 0 and 1, while the sum
in the ∆P �tness component can be a value between 0 and 45.

�e metrics collected are the number of �tness evaluations done
during a set number of generations, the best �tness achieved and
the actual time it took to complete each run.

2.2 Genetic algorithm
�e evolutionary algorithm employed is a variant of a generational
GA with two-point crossover (applied with a rate of 35%), a spe-
cialised mutation operator (applied with a per-individual rate of
35%) and elitism (applied to the top 15% of the population). �e �nal
15% of the each generation is randomly sampled from the search
space through reinitialisation.

�e mutation operator was applied with a (per allele) mutation
rate of 0.5 (meaning that on average 50% of the elements of an
individual would be mutated). At each application of the operator, a
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displacement is randomly generated by a random number generator
within the range of −0.1 and +0.1 and added to the corresponding
parameter value. Should the new value be outside the range of
accepted values, it is clamped to be within those values.

�e population size was 50. We set the tournament size to 6.
Experiments ran until 2000 evaluations of the �tness function were
completed or 100 generations passed, whichever happened �rst.

Each evolved vector was constrained to only contain values
between -3 and 5. Values outside of these ranges are not realistic
for the tested scenario.

2.3 Neural network
�e NN employed for these experiments is a feed-forward NN
with a single hidden layer, using the sigmoid activation function.
It is initialised with random weights. �e training is done via
backpropagation.

�e number of input neurons is equal to the number of param-
eters the GA is evolving. �e number of output neurons is equal
to how many �tness objectives are being tracked (2 in this experi-
ment). �e number of hidden layers and hidden layer neurons was
chosen arbitrarily to be 1 and 18 respectively.

�e network is trained using data generated by the GA. For every
evaluation of an individual, the parameters and �tness values are
passed to the predictor’s data set. �ese inputs and outputs are
then normalized to be within the 0 to 1 range, based on RanдeMin
and RanдeMax (RanдeMin = −3 and RanдeMax = 5) for inputs,
and 9500 (5000 for the score �tness componentW plus 4500 for the
parameter �tness component ∆P ) for outputs.

�e data set is split into a training set (80% of the data set) and a
validation set (the remaining 20% of the data set). When adding a
new individual to the set, if there are more individuals than a given
maximum (NMax ) in it, the oldest one is removed. No training is
only done unless there is a minimum number of individuals in the
data set (NMin ). Both NMin and NMax are set to 100.

2.4 Integrating the predictor within the GA
�e predictor is trained at the end of each GA generation on data it
has collected until that point. �is is done for a number of epochs
(NEpochs ), which was set to 100. An error value is computed on
the validation set. Accuracy of the predictor is then computed
based on the median of all �tnesses in the �rst generation and
the error computed a�er testing on the validation set. Accuracy =
1 − (VError/(Median1 ∗ ErrorRanдe)) and ErrorRange = 0.10.

VError represents the validation error and Median1 is the me-
dian of all �tnesses a�er the �rst generation, normalized to be
between 0 and 1 identically to how the outputs were normalised
during data gathering. For the NN we designed, we aimed for the
its results on the validation set to be within 10% (ErrorRanдe) of
the actual results. Satisfying this condition meant the predictor
would receive a positive accuracy rating.

�e predictor is then called during the GA’s evaluation of each in-
dividual. Should the computed accuracy be lower than 0 (Accuracy <=
0) the GA carries on with the standard evaluation of the individual.

If the predictor has a positive accuracy, the individual’s parame-
ters to it are passed to it. �e predictor normalises the input and
calculates the NN’s output based on it. �is output is considered
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Figure 1: Average best �tness values achieved a�er a given
number of evaluations. Lower values are better.

the prediction of the �tness values of that individual. If the predic-
tion represents a �tness that is worse than a given threshold value
Threshold , that prediction is simply accepted and the standard eval-
uation of the individual is skipped. Otherwise, the individual is
evaluated normally. For this experiments,Threshold is equal to the
median of all �tnesses in the previous generation.

2.5 Experiments
We ran 20 runs normally, without the predictor, and then the same
number of runs with the predictor. To be�er compare results, we
paired each run without a predictor to one with a predictor. Each
pair had the same starting populations and random seeds.

3 RESULTS
To achieve an acceptable level of �tness (360) it took the GAwithout
a predictor, on average, 1641 evaluations. �e GAwith the predictor
needed, on average, 1189 evaluations. �is represents a speed
improvement of 28% and can be observed in Figure 1.

A Wilcoxon signed rank test on the number of evaluations re-
quired to achieve the good enough �tness with the null hypothesis
that using the predictor is worse, gives us a p value of p = 0.042.
�e di�erence is thus statistically signi�cant.

Although there is an overhead with the training of the NN, it is
minimal compared to the cost of even a single evaluation.
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