Speeding up Genetic Algorithm-based Game Balancing using
Fitness Predictors’

Mihail Morosan

University of Essex
Colchester
mmoros@essex.ac.uk

ABSTRACT

Genetic Algorithms (GAs) can find game parameters that fit a de-
signer’s requirements. An issue with this is the long time taken
to evaluate fitness, as this requires running the game many times.
Here we use fitness predictors, currently neural networks, to speed
up the process by reducing the number of fitness evaluations. The
predictors are trained using data generated by the GA at runtime.
After training, the model is invoked to estimate the fitness of newly
created individuals. If the estimate is below a threshold, it is ac-
cepted. Otherwise, the original fitness function is invoked. We
have used this approach on Ms PacMan with promising results.

KEYWORDS

Genetic algorithm, neural network, PacMan, prediction, balancing

ACM Reference format:

Mihail Morosan and Riccardo Poli. 2017. Speeding up Genetic Algorithm-
based Game Balancing using Fitness Predictors. In Proceedings of GECCO
’17 Companion, Berlin, Germany, July 15-19, 2017, 2 pages.

DOI: http://dx.doi.org/10.1145/3067695.3076011

1 INTRODUCTION

Genetic Algorithms (GAs) can find game parameters that fit a de-
signer’s requirements [5]. An issue with this is the long time taken
to evaluate fitness, as this requires running the game many times.
Here we use neural-network (NN) based predictors, trained at run-
time, to quickly estimate the fitness of individuals and to decide if
they should be evaluated.

Fitness approximation is an actively explored research area [1]
because in many problems fitness evaluation is expensive. For in-
stance, [4] used NNs to simulate the actual fitness evaluation in
the evolution of music using interactive genetic programming, to
reduce human effort. Also, NNs were used as surrogate models for
fitness evaluations to optimise radiotherapy treatment [2]. A GA,
with the help of the NN, was successful in finding better solutions
compared to traditional methods used in practice. The implementa-
tion used a pre-trained NN as a surrogate model which required
expert knowledge and data on the subject.

*This work is supported by the EPSRC Centre for Doctoral Training in Intelligent
Games & Game Intelligence (IGGI) [EP/L015846/1]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07...$15.00
DOI: http://dx.doi.org/10.1145/3067695.3076011

91

Riccardo Poli
University of Essex
Colchester
rpoli@essex.ac.uk

2 METHODOLOGY

21

Ms PacMan is a single player game played on a 2-D board, where
the player controls the “PacMan” and has the goal of collecting as
many points as possible. There are 4 ghosts opposing the player. We
altered the game’s rules so that players win if they reach 1600 points.
So, players can have a win-rate associated to their performance.

To automate the control of the “PacMan”, an MCTS agent based
on work by Ikehata and Ito [3] was used. It is one of the best per-
forming agents available, but also very expensive computationally.

The metric the game designer can assess is the win-rate, being
able to evolve a harder variation of the game by targeting a lower
win-rate, or an easier one by aiming for a higher win-rate.

There are 9 parameters evolved: the PacMan’s speed, the chasing
speeds of each of the 4 ghosts, as well as their fleeing speed.

There are two objectives in the fitness evaluation: the score
fitness and the parameter fitness. After running a number of games
using the modified parameters, the resulting scores give us a score
fitness value (W). The parameter fitness (Ap) is a a sum of the
absolute values of the parameters, representing how far the solution
is from the default game parameters.

Formally, the fitness function can be written as: Fitness = W+Ap,
where W = |[WR — DWR| X Cyy and Ap = 3.7 |A;| X Ca. In the
score fitness component W, WR = win-rate (from 0 to 1), DWR =
desired win-rate, Cyy = win-rate weight. In the parameter fitness
component Ap, A; = difference between the original ith parameter
and the evolved ith parameter, Cp = parameter difference weight.
Cw and Cp are the values that the game designer can change to
give each fitness component a different importance.

Here, DWR = 0.5, representing a win-rate of 50%, Cyy = 5000
and Cp = 100. This gives the two objectives similar relevance, as
|[WR — DWR| can only be a value between 0 and 1, while the sum
in the Ap fitness component can be a value between 0 and 45.

The metrics collected are the number of fitness evaluations done
during a set number of generations, the best fitness achieved and
the actual time it took to complete each run.

Ms Pacman

2.2 Genetic algorithm

The evolutionary algorithm employed is a variant of a generational
GA with two-point crossover (applied with a rate of 35%), a spe-
cialised mutation operator (applied with a per-individual rate of
35%) and elitism (applied to the top 15% of the population). The final
15% of the each generation is randomly sampled from the search
space through reinitialisation.

The mutation operator was applied with a (per allele) mutation
rate of 0.5 (meaning that on average 50% of the elements of an
individual would be mutated). At each application of the operator, a

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

displacement is randomly generated by a random number generator
within the range of —0.1 and +0.1 and added to the corresponding
parameter value. Should the new value be outside the range of
accepted values, it is clamped to be within those values.

The population size was 50. We set the tournament size to 6.
Experiments ran until 2000 evaluations of the fitness function were
completed or 100 generations passed, whichever happened first.

Each evolved vector was constrained to only contain values
between -3 and 5. Values outside of these ranges are not realistic
for the tested scenario.

2.3 Neural network

The NN employed for these experiments is a feed-forward NN
with a single hidden layer, using the sigmoid activation function.
It is initialised with random weights. The training is done via
backpropagation.

The number of input neurons is equal to the number of param-
eters the GA is evolving. The number of output neurons is equal
to how many fitness objectives are being tracked (2 in this experi-
ment). The number of hidden layers and hidden layer neurons was
chosen arbitrarily to be 1 and 18 respectively.

The network is trained using data generated by the GA. For every
evaluation of an individual, the parameters and fitness values are
passed to the predictor’s data set. These inputs and outputs are
then normalized to be within the 0 to 1 range, based on Rangepin
and Rangeprqx (Rangeprin = —3 and Rangeprqx = 5) for inputs,
and 9500 (5000 for the score fitness component W plus 4500 for the
parameter fitness component Ap) for outputs.

The data set is split into a training set (80% of the data set) and a
validation set (the remaining 20% of the data set). When adding a
new individual to the set, if there are more individuals than a given
maximum (N4) in it, the oldest one is removed. No training is
only done unless there is a minimum number of individuals in the
data set (Nin). Both Njfi, and Ny, are set to 100.

2.4 Integrating the predictor within the GA

The predictor is trained at the end of each GA generation on data it
has collected until that point. This is done for a number of epochs
(NEpochs), which was set to 100. An error value is computed on
the validation set. Accuracy of the predictor is then computed
based on the median of all fitnesses in the first generation and
the error computed after testing on the validation set. Accuracy =
1 — (VError/(Median;y = ErrorRange)) and ErrorRange = 0.10.

VError represents the validation error and Median; is the me-
dian of all fitnesses after the first generation, normalized to be
between 0 and 1 identically to how the outputs were normalised
during data gathering. For the NN we designed, we aimed for the
its results on the validation set to be within 10% (ErrorRange) of
the actual results. Satisfying this condition meant the predictor
would receive a positive accuracy rating.

The predictor is then called during the GA’s evaluation of each in-
dividual. Should the computed accuracy be lower than 0 (Accuracy <=
0) the GA carries on with the standard evaluation of the individual.

If the predictor has a positive accuracy, the individual’s parame-
ters to it are passed to it. The predictor normalises the input and
calculates the NN’s output based on it. This output is considered

92

Mihail Morosan and Riccardo Poli

—e— Without predictor ||
—=— With predictor

1,500

1,000

Fitness

500

0 I I I
0 500 1,000 1,500

Total evaluations

2,000

Figure 1: Average best fitness values achieved after a given
number of evaluations. Lower values are better.

the prediction of the fitness values of that individual. If the predic-
tion represents a fitness that is worse than a given threshold value
Threshold, that prediction is simply accepted and the standard eval-
uation of the individual is skipped. Otherwise, the individual is
evaluated normally. For this experiments, Threshold is equal to the
median of all fitnesses in the previous generation.

2.5 Experiments

We ran 20 runs normally, without the predictor, and then the same
number of runs with the predictor. To better compare results, we
paired each run without a predictor to one with a predictor. Each
pair had the same starting populations and random seeds.

3 RESULTS

To achieve an acceptable level of fitness (360) it took the GA without
apredictor, on average, 1641 evaluations. The GA with the predictor
needed, on average, 1189 evaluations. This represents a speed
improvement of 28% and can be observed in Figure 1.

A Wilcoxon signed rank test on the number of evaluations re-
quired to achieve the good enough fitness with the null hypothesis
that using the predictor is worse, gives us a p value of p = 0.042.
The difference is thus statistically significant.

Although there is an overhead with the training of the NN, it is
minimal compared to the cost of even a single evaluation.

REFERENCES

[1] Maumita Bhattacharya. 2013. Evolutionary Approaches to Expensive Optimisa-
tion. Arxiv - Computers & Society 2, 3 (2013), 53-59. DOI:http://dx.doi.org/10.
14569/IJARAIL2013.020308

Joana Dias, Humberto Rocha, Brgida Ferreira, and Maria do Carmo Lopes. 2014.
A genetic algorithm with neural network fitness function evaluation for IMRT
beam angle optimization. Central European Journal of Operations Research 22, 3
(9 2014), 431-455. DOI : http://dx.doi.org/10.1007/s10100-013-0289-4

Nozomu Ikehata and Takeshi Ito. 2011. Monte-Carlo tree search in Ms. Pac-Man.
In 2011 IEEE Conference on Computational Intelligence and Games (CIG’11). IEEE,
39-46. DOI:http://dx.doi.org/10.1109/CIG.2011.6031987

Brad Johanson and Riccardo Poli. 1998. GP-Music: An Interactive Genetic Pro-
gramming System for Music Generation with Automated Fitness Raters. Technical
Report.

Mihail Morosan and Riccardo Poli. 2017. Automated Game Balancing in Ms
PacMan and StarCraft Using Evolutionary Algorithms. In EvoApplications 2017.
DOI:http://dx.doi.org/10.1007/978-3-319-55849-325

[2]

http://dx.doi.org/10.14569/IJARAI.2013.020308
http://dx.doi.org/10.14569/IJARAI.2013.020308
http://dx.doi.org/10.1007/s10100-013-0289-4
http://dx.doi.org/10.1109/CIG.2011.6031987
http://dx.doi.org/10.1007/978-3-319-55849-3 25

	Abstract
	1 Introduction
	2 Methodology
	2.1 Ms Pacman
	2.2 Genetic algorithm
	2.3 Neural network
	2.4 Integrating the predictor within the GA
	2.5 Experiments

	3 Results
	References

