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ABSTRACT
�e electoral zone design problem consists in redrawing the bound-
aries of legislative districts for electoral purposes, in such a way
that federal or state requirements are ful�lled. In Mexico, both
population equality and compactness of the designed districts are
considered as two con�icting objective functions. �e present work
represents the �rst intent to apply a classical Multi-Objective Evolu-
tionary Algorithm (the NSGA-II) to this hard combinatorial problem,
whereas the Mexican Federal Electoral Institute has traditionnally
used a Simulated Annealing (SA) algorithm based on a weighted ag-
gregation function. Despite some convergence troubles, the NSGA-
II obtains promising results when compared with the SA algorithm,
producing be�er-distributed solutions over a wider-spread front.
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1 PROBLEM DESCRIPTION
�e zone design problem consists in aggregating small geographical
units (GUs) into regions, in such a way that one (or more) objective
function(s) is (are) optimized and some constraints are satis�ed.
Electoral redistricting is the best known case, due to its in�uence in
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the results of electoral processes and to its computational complex-
ity, which has been proven to be NP-Hard [3]. In this framework,
GUs are grouped into a predetermined number of zones or districts
and democracy must be enforced through the satisfaction of some
constraints imposed by law.

In Mexico, the National Electoral Institute (INE, acronym for
Instituto Nacional Electoral) has used a Mathematical Programming
model promoting the creation of districts accounting for the fol-
lowing three criteria.
Population equality. �e state average population is determined
dividing the number of inhabitants in the state by the number of dis-
tricts to be formed. �e number of inhabitants in each district must
be close to the state average population and a maximum population
deviation of 15% is allowed, formulated as an objective funtion to
be minimized:
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Where P = {Z1,Z2, ...,Zn } is a redistricting plan with n districts,
PZs is the population of district Zs (s = 1, . . . ,n) and PM is the
state average population.
Compactness. �e redistricting process must promote the design
of compact districts, that is, the boundaries of the districts must
have a geometric shape as close as possible to the perimeter of
a square having the same area. �is concept is included as an
objective function to be minimized:
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Where PCZs and ACZs are the perimeter and the area of the con-
sidered district Zs , respectively.
Contiguity. Districts must have geographic continuity taking into
account the geo-electoral boundaries approved by the INE. �is
criterion is included as a hard constraint.

Di�erent metaheuristics have been reported in the specialized
literature for solving this problem, such as local search [4] or Evo-
lutionary [1] and Swarm Intelligence [5] algorithms, while the INE
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have used an improved Simulated Annealing (SA). However, to the
best of our knowledge, no implementation of any Multi-Objective
Evolutionary Algorithm (MOEA) has been tested for the treatment
of the electoral zone design problem. �erefore, the primary pur-
pose of this study is adapting and implementing an algorithm based
on NSGA-II [2] for solving the electoral zone design problem.

2 COMPUTATIONAL EXPERIMENTS
�e INE’s implementation of SA is used here, involving a classical
geometric decreasing cooling schedule. �e NSGA-II implemented
for this study is also the canonical version. Both techniques share
the same initial solution generation and move/mutation mecha-
nisms, adapted to the tackled problem. Crossover is performed
through a Path Relinking wise strategy. �e SA based algorithm
uses a weighted aggregation function f (P) = λ1C1 (P) + λ2C2 (P),
with a set of 50 evenly distributed weight vectors λ. �e solutions
obtained by each run are �ltered with a Pareto sorting procedure
in order to get only the non-dominated front.

Computational experiments are carried out with the two algo-
rithms for 8 out of the 32 Mexican states. 10 independent executions
were performed for each algorithm. �e best solutions of the 10
produced approximated Pareto fronts form the global front a�ained
by each technique, while their combination is considered as an esti-
mation of the true Pareto front PF true . �e fronts are compared
according to the well-known hypervolume and front coverage met-
rics, as well as the participation (proportion of solutions produced
by a technique that participate to PF true ).

�e population size in NSGA-II is set to 50 individuals, in order
to provide supposedly the same number of Pareto solutions as the
SA. �e NSGA-II was run during 7,000 generations because of time
limitations. �is means 0.35 × 106 objective function evaluations
(OFEs) runs, taking about 3 hours each. In average, the number of
OFEs used by SA is about 200 times higher than that assigned to
NSGA-II, while NSGA-II needs about three times more time than
SA to generate one single front. �is behavior is due to the Pareto
sorting procedure included in NSGA-II, which represents more than
97% of the total CPU time used by the NSGA-II.

First, solutions provided by each technique, the NSGA-II pro-
duces, as expected, 50 non-dominated solutions in each run while
SA only �nds, in average, slighlty more than 10 of them. More-
over, in almost all cases, one run of the MOEA determines a set of
non-dominated solutions that covers a much broader space than
that found by SA. NSGA-II is able to identify more solutions in the
extreme parts of the front and its points are more evenly distributed
than those of the SA.

Table 1: Participation P to PF true

State % SA % NSGA-II
Aguascalientes 37.93 62.07
Baja California 14.63 85.36
Baja Calif. Sur 37.50 87.50
Colima 36.84 84.21
Durango 66.67 33.33
Nayarit 5.56 94.44
�erétaro 26.67 73.33
Yucatán 7.41 92.59

Table 2: Front coverage metric (for global fronts).

State C(SA, NSGA-II) C(NSGA-II, SA)
Aguascalientes 0.6604 0.2143
Baja California 0.3518 0.5714
Baja Calif. Sur 0.1111 0.00
Colima 0.2381 0.00
Durango 0.8889 0.3333
Nayarit 0.00 0.9091
�erétaro 0.7333 0.3333
Yucatán 0.1613 0.8889

As a consequence, the composition of the (approximated)PF true
is biased in favor of NSGA-II, as indicated by Table 1. In �ve cases,
more than 80% of the front is constituted by MOEA solutions.

Nevertheless, the MOEA experiences convergence troubles in
some cases. Few SA non-dominated solutions, located near the
knee region of the Pareto fronts, dominate a great number of the
NSGA-II solutions. �is observation therefore indicates that the
NSGA-II, when trapped in a locally optimal front, cannot jump this
barrier and ge�ing to the real non-dominated front. Note, however,
that this trend is not always re�ected in the metrics since NSGA-II
obtains be�er results than SA in 5 out of 8 for the front coverage,
while results are mitigated for the hypervolume (Tables 3 and 2).

�ese preliminary computational experiments highlight the good
behavior of the NSGA-II, which is able to identify a set of solutions
well distributed over a wide-spread front. However, despite the di-
versity of solutions found, NSGA-II experiences convergence issues
in the knee region of the front, promoting further investigation deal-
ing with genetic operators, algorithm hybridization and regarding
the computational e�ciency of the Pareto sorting procedure.

Table 3: Hypervolumes compared between SA and NSGA-II

State Global fronts
PF trueNSGA-II SA

Aguascalientes 16.1176 16.2443 16.2499
Baja California 31.6089 32.0449 32.0534
Baja Calif. Sur 0.0035 0.0033 0.0035
Colima 1.1276 1.0919 1.1277
Durango 8.3585 8.7821 8.7838
Nayarit 0.765 0.7424 0.765
�erétaro 7.2341 7.2381 7.2471
Yucatán 18.9126 19.0298 19.042
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