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ABSTRACT
A recent trend in multiobjective evolutionary algorithms is to in-
crease the population size to approximate the nondominated so-
lution set with high accuracy. And the execution time becomes
a problem in engineering applications. In this paper, we propose
distributed, high-speed NSGA-II using a many-core environment to
obtain a Pareto-optimal solution set excelling in convergence and
diversity. �is method improves performance while maintaining
the accuracy of the Pareto-optimal solution set by repeating NSGA-
II distributed processing in a many-core environment inspired by
the divide-and-conquer method together with migration processing
for compensation of the nondominated solution set obtained by
distributed processing. On comparing with NSGA-II executing on
a single CPU and parallel, high-speed NSGA-II using a standard
island model, it was found that the proposed method greatly short-
ened the execution time for obtaining a Pareto-optimal solution
set with equivalent hypervolume while increasing the accuracy of
solution searching.
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1 DISTRIBUTED NSGA-II WITH
COMPENSATION ON MANY-CORE
PROCESSORS: DNSGA-II

In recent years, the trend in multiobjective evolutionary algorithms
has been to increase the population size to approximate the Pareto-
optimal front [2] with high accuracy [3]. Increasing the population
size, however, results in an exponential increase in the computa-
tional complexity required for evaluating the dominant-subordinate
relationships among solutions. As a result, execution time can
be a problem when applying such an approach to engineering
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Figure 1: Concept of DNSGA-II with migration.

applications. However, high-accuracy multiobjective evolution-
ary algorithms such as NSGA-II [2], SPEA2 [5], MOEA/D [4], and
NSGA-III [1] add original processing di�erent from ordinary genetic
operations to improve convergence and the diversity of the non-
dominated solution set, which re�ects the fact that simply applying
the technologies of prior research cannot maintain the accuracy of
solution searching. �e standard islandmodel repeats the process of
dividing the population into subgroups (islands), executing NSGA-
II in parallel, and migrating elite individuals on each island to other
islands at appropriate times. However, when executing nondom-
inated sorting — a feature of NSGA-II — on multiple islands in a
divided manner and evaluating the elite individuals (nondominated
solutions) on each island across the entire population, the prob-
lem arises that some of those solutions may not be nondominated
a�er all. In addition, increasing the number of islands to acceler-
ate processing increases the frequency of appearance of solution
candidates erroneously classi�ed as nondominated solutions.

To resolve the issue, we propose a method for achieving fast,
parallel processing of NSGA-II while maintaining the accuracy of
the Pareto-optimal front. As shown in Fig. 1, the proposedDNSGA-
II method executes NSGA-II in each subgroup in parallel, gathers
the nondominated solution sets (rank 1 solution sets) obtained by
solution searching on each CPU, and again performs nondomi-
nated sorting with ranking as compensation processing. Next, the
method performs migration by allocating to each CPU a portion of
the nondominated solution set obtained by compensation. It then
proceeds to the next generation of solution searching by NSGA-
II on each CPU. �is repeated execution of NSGA-II distributed
processing in a many-core environment while performing compen-
sation processing of the false nondominated solution sets obtained
in each subgroup achieves high-speed NSGA-II while maintaining
the accuracy of solution searching.
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2 EVALUATION AND DISCUSSION
To assess the e�ectiveness of the proposed method, we compared
two items— the accuracy of solution searching and execution time—
among three types of NSGA-II execution: conventional NSGA-II on
a single CPU, parallel execution of NSGA-II applying the standard
island model, and parallel execution of NSGA-II by the proposed
model. We used hypervolume as an indicator of the accuracy of
solution searching, and for test problems, we used the multiobjec-
tive optimization problems taken from the problems a�ached to
the NSGA-II source code. �e test execution environment is Intel
Xeon X5680, dual processor system (12 cores). Experimental results
were taken to be the average of 10 trials.

As represented in Fig. 2, in all test problems, performing mi-
gration with the proposed method tended to result in a higher
hypervolume. And, with the exception of performing migration
generation, the proposed method was able to keep execution time
below that of single-CPU NSGA-II (Time-1process) despite the
overhead associated with migration processing. On the other hand,
the results for the conventional island model in all test problems
showed no signi�cant di�erence with the hypervolume values ob-
tained by the proposed method for a small degree of parallelism (2-4
CPUs). On increasing the degree of parallelism, however, island-
model results converged to hypervolume values less than those of
the proposed method. Furthermore, for the CTP1 test problems,
the proposed method could surpass the accuracy of solution search-
ing by a single CPU by shortening the migration interval with a
high degree of parallelism such as 12 or 8 CPUs. It was also found
that se�ing an appropriate migration interval could result in even
higher hypervolume values.

We evaluated the approximate accuracy of the Pareto-optimal
front of nondominated solution sets in terms of execution time for
the test problems. As represented in Fig. 3, in the case of DNSGA-II,
we set the population per CPU to 200 individuals and performed
the evaluation while increasing the degree of parallelism and total
population. Referring to these �gures, (a) shows bar graphs and
plots for hypervolume and execution time, respectively, versus total
population and (b) shows the relationship between hypervolume
and execution time for each value of total population. �e results in
(b) show that the execution time required for obtaining equivalent
hypervolume is signi�cantly shorter by parallel DNSGA-II than
single-CPU NSGA-II. When increasing the degree of parallelism
while keeping the population per CPU �xed, it was found that the
same hypervolume values as obtained by NSGA-II executed on a
single CPU could be obtained, and in addition, that execution time
could be shortened from 10 times to a maximum of 60 times for the
same hypervolume value.
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(a) Migration in island model (conventional method)

0

2

4

6

8

10

200x12 300x8 400x6 600x4 800x3 1200x2

0.6387

0.6389

0.6391

0.6393

0.6395

E
x

ec
u

ti
o

n
T

im
e

(s
ec

)

Population

H
y
p

er
v

o
lu

m
e

hv-1process hvNoMig hvMig20
hvMig10 hvMig5 hvMig2
hvMig1 Time-1process TimeNoMig
TimeMig20 TimeMig10 TimeMig5
TimeMig2 TimeMig1

(b) Migration in DNSGA-II (proposed method)
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Figure 2: Evaluation result of CTP1.
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Figure 3: Evaluation results of hypervolume and execution
time in CTP5.
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