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ABSTRACT
Modularity Density Maximization (MDM) aims at the identifica-
tion of modular clusters in graphs. In this paper, we introduce a
quantitative heuristic called HLSMDM-λ, which solves the MDM
problem in large graphs. We compared it with state-of-the-art results
of exact and heuristic methods such as MDB2, GAOD, iMeme-Net,
HAIN, divisive BMD-λ, MCN-λ, CNM, and Louvain. The largest
tested graphs were executed very efficiently. Our results show that
HLSMDM-λ is scalable in terms of time and is able to find parti-
tions with the highest objective value for the largest tested graphs.
HLSMDM-λ also produced effective results in a ground truth anal-
ysis. These results point out that HLSMDM-λ is a state-of-the-art
heuristic for the MDM problem.
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1 INTRODUCTION
Modularity Density Maximization (MDM) is an optimization graph
clustering problem which finds the best partition by using an objec-
tive function that measures (or quantifies) the difference between
the internal and the external connectivity of each cluster [9]. The
MDM objective function is presented in Equation (1), where C is a
partition of disjoint clusters, Ec is the set of edges which connects
two nodes of the cluster c, and dv is the degree of a node v ∈ V .
This function uses the number of nodes within the cluster, not the
total number of edges, so avoiding the resolution limit [5] present
in Modularity Maximization (MM) [11]. This function is used to
obtain the “ratio association” to find small clusters when λ < 0.5,
and the “ratio cut” to find large clusters when λ > 0.5. Li et al. [9]
suggest that this function can be used to find the appropriate level of
topological structure of graphs to find proper partitions.
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Some heuristics have been developed for MDM. One can cite five
efforts: (i) the metaheuristics genetic algorithm GAOD [10], (ii) the
memetic algorithm iMeme-Net [6], (iii) the hybrid artificial immune
heuristic HAIN [7]; (iv) the eight divisive heuristics of [4]; and the
seven constructive and multilevel heuristics for graphs with more
than 300,000 nodes in [13]. Other efforts have been made towards
yielding optimal partitions. A non-linear model was proposed in [9].
This model was improved by [7]. By transforming the model of [9],
Costa [3] developed a linear model, which solved instances with up
to 40 nodes.

In this context, our paper presents one hybrid local search heuris-
tics for MDM that use the quantitative ratio λ of Equation (1) and
compares it to the MCN heuristic of Santiago and Lamb [13]. Our
hybrid heuristic is the HLSMDM-λ heuristic for the MDM problem
that was inspired in the multilevel heuristics reported in [12]. We
compared our heuristics with CNM [2] and Louvain [1] heuristics
because they are heuristics scalable to hundreds of thousands of
nodes for the MM problem.

2 QUANTITATIVE HYBRID LOCAL SEARCH
The Hybrid Local Search heuristic (HLSMDM-λ) for MDM is il-
lustrated in Algorithm 1. The parameter G (V ,E) is an undirected,
unweighted graph. The initial solution part is generated by the con-
structive search of Coarsening Merger (CM) from [13]. HLSMDM-λ
is composed of two local search phases. In the first phase, a local
search called MCN-λ from [13] is applied. When the second phase
is run, a second local search called LNM-λ from [13] is performed
on the partition resulted by the MCN-λ.

Algorithm 1: HLSMDM-λ
Input :G (V , E ), λ

1 par t ← CM(G, par t, λ) // from [13]

2 f ir st ←MCN-λ (G, par t, λ) // from [13]

3 second ← LNM-λ (G, f ir st, λ) // from [13]

4 if Dλ (f ir st ) > Dλ (second ) then
5 return f ir st

6 else
7 return second

3 EXPERIMENTS AND RESULTS
The experiments were performed on a PC with an Intel Core i7
64 bits with 3.40GHz with 8192KB of cache memory and 8GB of
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RAM, under Linux Ubuntu 14.04.1 LTS operating system. Each
experiment was run by using a single thread. The language used was
C++, with the GCC compiler.

Experiments with the same 33 instances used in [13] were per-
formed. The heuristic HLSMDM-λ demanded more time than Lou-
vain and MCN-λ after 5,000 edges. In [7], it was shown that GAOD,
iMeme-Net, HAIN found solutions in 663, 78, and 368 seconds for
instances with less than 3,000 edges, respectively. The MCN-λ and
HLSMDM-λ found solutions for graphs with at most 100,000 edges
in less than 7 seconds.

In ground truth analysis, we submitted random graphs generated
by the LFR framework [8] to the heuristics CNM, Louvain, MCN-λ
and HLSMDM-λ. In these graphs, we know the expected clustering,
so that we can perform a ground truth analysis. In MCN-λ and
HLSMDM-λ heuristics, the λ ratios tested were {0.1,0.2,0.3,0.4,0.5,
0.6,0.7, 0.8,0.9}.

All graphs were created with 100,000 nodes, average degree 15,
maximum degree 50, minus exponent for the degree sequence equal
to 2, minus exponent for the community size distribution equal to 1.
The mixing parameter used was µ ∈ {0.1,0.2,0.3,0.4, 0.5,0.6}. This
parameter was used to generate problems with increasing difficulty
because it defines the connection between nodes from different
expected clusters. The higher the parameter is; the weaker the
modular property of the clusters get.

Table 1 shows the “Matthews Correlation Coefficient” (ϕ value).
The larger the coefficient ϕ is, the stronger the correlation between
the partition obtained by the heuristic and the correct partition is. The
results show the importance of the correct choosing λ parameters.
HLSMDM-λ results suggest that this heuristic works better when the
clustering have a structure with a strong modular property. MCN-
λ was the only heuristic that found the clustering structures for
instances with µ > 0.3.

Table 1: Comparisons among ϕ values obtained

µ CNM Louvain λ MCN-λ HLSMDM-λ µ CNM Louvain λ MCN-λ HLSMDM-λ

0.1 .274 .362 0.1 .916 .99 0.4 .042 .255 0.1 .543 .0
0.2 .928 .99 0.2 .598 .0
0.3 .937 .99 0.3 .656 .0
0.4 .944 .99 0.4 .709 .0
0.5 .941 .99 0.5 .728 .0
0.6 .929 .99 0.6 .766 .0
0.7 .91 .99 0.7 .75 .0
0.8 .889 .99 0.8 .704 .0
0.9 .847 .99 0.9 .644 .0

0.2 .096 .324 0.1 .825 .985 0.5 .032 .221 0.1 .217 .0
0.2 .854 .985 0.2 .368 .0
0.3 .87 .985 0.3 .502 .0
0.4 .883 .985 0.4 .569 .0
0.5 .886 .984 0.5 .608 .0
0.6 .873 .984 0.6 .664 .0
0.7 .848 .984 0.7 .691 .0
0.8 .812 .985 0.8 .647 .0
0.9 .761 .985 0.9 .561 .0

0.3 .056 .288 0.1 .703 .973 0.6 .022 .183 0.1 .0 .0
0.2 .748 .973 0.2 .0 .0
0.3 .785 .972 0.3 .004 .0
0.4 .804 .972 0.4 .324 .0
0.5 .826 .972 0.5 .444 .0
0.6 .826 .972 0.6 .504 .0
0.7 .798 .972 0.7 .56 .0
0.8 .756 .972 0.8 .554 .0
0.9 .717 .972 0.9 .45 .0

4 CONCLUSIONS
This paper introduces a hybrid quantitative local search for the Mod-
ularity Density Maximization problem, called HLSMDM-λ. The

proposed method was compared with GAOD, iMeme-Net, HAIN,
and MCN-λ MDM heuristics, and CNM, and Louvain MM heuris-
tics. Our results suggest that MCN-λ and HLSMDM-λ are scalable
to hundreds of thousands of nodes. Ground truth analysis showed
that they reached the closest expected results when comparing to the
correct partitions for the most of the random graphs.

For MCN-λ and HLSMDM-λ, the largest tested graphs were
executed in less than 10 minutes. Finally, we can state that the
reported results suggest that MCN-λ and HLSMDM-λ are state-of-
the-art quantitative heuristics for the MDM problem in terms of
time.

The results also suggest that the correct usage of the quantitative
ratio λ can help to reach results closer to the expected partition than
using the standard value λ = 0.5.

As further investigations, we suggest the use of MCN-λ and
HLSMDM-λ as exploitation in other metaheuristics.
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