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ABSTRACT
E�cient robust optimisation methods exploit the search history
when evaluating a new solution by using information from previ-
ously visited solutions that fall in the new solution’s uncertainty
neighbourhood. We propose a full exploitation of the search his-
tory by updating the robust �tness approximations across the entire
search history rather than a �xed population. Our proposed method
shows promising results on a range of test problems compared with
other approaches from the literature.

CCS CONCEPTS
•�eory of computation → Evolutionary algorithms;
•Computing methodologies→ Uncertainty quanti�cation;

KEYWORDS
Robust optimisation; uncertain optimisation; sampling bias.
ACM Reference format:
Khulood Alyahya, Kevin Doherty, Jonathan E. Fieldsend, and Ozgur E.
Akman. 2017. On the Exploitation of Search History and Accumulative
Sampling in Robust Optimisation. In Proceedings of GECCO ’17 Companion,
Berlin, Germany, July 15-19, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3076060

1 INTRODUCTION
Robust designs are needed if, e.g., we cannot manufacture with
complete accuracy, or there are a set of di�erent scenarios which
a design must operate in. �is is distinct from coping with noisy
problems, where there is error in the cost function itself. Algorithms
have been developed for both robust and noisy problems [1, 6, 8].

Here we consider robust optimisation where we know the under-
lying distribution of our scenario sets and we seek a solution with
the best expected �tness which we refer to as the e�ective �tness.
For a givenminimisation problem, min f (x), we seek a design x that
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minimises the function fe� (x) =
∫ ∞
−∞

f (x + δ )P (δ )dδ , where P (δ )
is the probability of a disturbance, δ . Here a discrete set of designs
in a prede�ned neighbourhood (the disturbance set) represents our
scenario set, on which we estimate the e�ective �tness. �e designs
to include in the disturbance set could be selected by Monte-Carlo
sampling, but this is computationally expensive. We may utilise
previously evaluated designs visited during the search process, but
as these are not independent and identically distributed (i.i.d.), they
introduce bias into (and corrupt) the robust approximation.

2 PROPOSED ADVANCES
We combine elite accumulative sampling (EAS), used in noisy opti-
misation problems [4, 5, 7], with updating the robust �tness approxi-
mations across the entire search history (Algorithm 1). �e e�ective
�tness of a design is estimated by weighting previously evaluated
points in its disturbance neighbourhood. We use the weighting
approach proposed by Branke & Fei [2] based on the Wasserstein
distance. When an elite member is chosen for re-sampling, a point
in its disturbance neighbourhood is chosen for evaluation also fol-
lowing the method in [2]. �is maximal use of information allows
us to get be�er estimates for relatively li�le computational cost —
o�en re�ning multiple solutions for each new location query.

3 EXPERIMENTAL DESIGN AND RESULTS
We empirically assess three versions of Algorithm 1 here. UH:
updating history only, the lines from 23 to 28 in Algorithm 1 will
not be executed. EAS: re-sampling only with no history updates
(exploiting the ASA framework from [2]). the following lines will
not be executed: 6, 21, and in line 27 only the elite that has been
sampled is updated by the value of the new sampled design in its
disturbance neighbourhood. EAS+UH: All the lines are executed.

We use the following set-up. Initially 10d designs, where d is
the number of dimensions, are generated using Latin hypercube
sampling. An elite set size of λ = 20. A run is for 2,500 cost function
queries (including the initialisation). A crossover probability of 0.8
and simulated binary crossover [3]. A mutation rate of 1/d using
Gaussian mutation, σ set to 10% of the range (rejection sampling
for bound-violating proposals). We assess the performance on three
test problems and also compare with the results in [2].

Each method is run 30 times, with d = 5. We denote our es-
timate of the robust optimal design as x�nal. We compute this as
the mean design values of the �nal ten best elite solutions, i.e.,
x�nal =

1
10
∑10
i=1 xi . �e e�ective �tness fe� (x�nal) is then calculated

by numerically integrating over the neighbourhood of x�nal using
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Algorithm 1 Elite Accumulative Sampling with History Updates
Require: r Number of random initial samples
Require: Pcross Probability of crossover
Require: λ Number of elite solutions to consider
Require: max evals Maximum number of �tness evaluations
Require: N (x) Disturbance neighbourhood of x
Require: P (δ ) Probability distribution of disturbances δ , where

u ∈ N (x) ⇐⇒ P (δ = |x − u|) > 0
1: H ← ∅ Ordered set, w.r.t. f̂e� (x), of all evaluated locations
2: X ← initial samples(r ) Generate r random samples
3: for all x ∈ X do
4: y ← evaluate(x) Evaluate x
5: ŷe� ← estimatefe� (x,H ) Calculate f̂e� (x) using NH (x) =

{u ∈ H | u ∈ N (x)}, weighted by Wasserstein distance.
6: update history(H , (x,y)) update f̂e� of NH (x)
7: H ← H ∪ {(x,y, ŷe�)} Add x to history
8: end for
9: evals ← r Track evaluations expended
10: while evals < max evals do
11: {v, u} ← select from elite(H ) Select two elite members
12: if uni f orm rand () < Pcross then
13: x← crossover(v, u) Create a single child via crossover
14: else
15: x← v Copy �rst parent for later mutation if no crossover
16: end if
17: x′ ← mutate(x) Mutate x
18: y′ ← evaluate(x′) Evaluate x′

19: evals ← evals + 1
20: ŷ′e� ← estimatefe� (x

′,H ) See description on line 5
21: update history(H , (x′,y′)) update f̂e� of NH (x′)
22: H ← H ∪ {(x′,y′, ŷ′e�)} Add x′ to history
23: x∗ ← get best elite(H ) Get the best elite
24: x′′ ← resample best elite(x∗,N (x∗),NH (x∗)) Sample

x′′ ∈ N (x∗) according to the Wasserstein method in [2].
25: y′′ ← evaluate(x′′) Evaluate x′′

26: ŷ′′e� ← estimatefe� (x
′′,H ) See description on line 5

27: update history(H , (x′′,y′′)) update f̂e� of NH (x′′)
28: H ← H ∪ {(x′′,y′′, ŷ′′e�)} Add x′′ to history
29: end while

Table 1: E�ective �tness: mean (standard deviation).

TP 1 TP 2 TP 3
SEM 0.899 (0.0314) −4.128 (0.0434) 3.357 (0.0945)
SEM+AR 0.539 (0.0069) −4.185 (0.0420) 2.837 (0.0939)
ABRSS 0.889 (0.0451) −4.329 (0.0388) 2.557 (0.0717)
LHS+ASA 0.527 (0.0013) −4.423 (0.0362) 2.308 (0.0297)
UH 0.526 (0.0073) −3.582 (0.4584) 4.337 (0.4714)
EAS 0.524 (0.0052) −4.155 (0.4525) 2.224 (0.2499)
EAS+UH 0.523 (0.0049) −4.023 (0.3504) 2.108 (0.0187)

global adaptive quadrature [9] with 1e−10 absolute error tolerance.
�e estimated fe� (x) is denoted by f̂e� (x). �e means and standard
deviations of fe� (x�nal) for the three methods are displayed in Table 1,

alongside the results from [2]. We ran a Wilcoxon signed-rank test
with the Bonferroni Correction between each pair of our methods
for each test problem (signi�cance level p < 0.05/3 = 0.0167). All
three proposed methods perform well on TP1, are able to �nd the
robust optimum, stay away from the original (deceptive) global
optimum, and are not signi�cantly di�erent from each other in per-
formance. On TP2 both EAS and EAS+UH perform be�er than UH
alone. However, the di�erence between EAS and EAS+UH is not
statistically signi�cant. �is is perhaps because in this particular
problem the solutions are dispersed across the di�erent optima,
which may lead the history updating to have li�le e�ect. For TP3,
both EAS and EAS+UH outperform UH. For this problem, updat-
ing the history does improve the performance of the optimisation
signi�cantly, as EAS+UH performs signi�cantly be�er than EAS
alone. Combining history updates with elite accumulative sampling
(EAS+UH) always �nds the exact robust optimum and performs
be�er than the mean of LHS+ASA in all of the 30 runs.

4 CONCLUSION
We have demonstrated that elite accumulative sampling, a method
previously used with success in noisy optimisation problems, can
be e�ectively utilised for robust problems. In addition to this, we
have investigated the e�ect of updating our robust �tness estimates
for our entire history of solutions and we have shown that this
can improve the performance of a robust optimisation algorithm as
assessed by its application to a set of established robust test prob-
lems. We found that the relative performance of elite accumulative
sampling and updating the history depend on the function to be
optimised. On two of our three test problems (TP2 & TP3) elite
accumulative sampling results in be�er performance than updating
the history alone. However, in some cases, the combination of both
can be very powerful (as in TP3). Interestingly, we found that on
one of our test problems (TP1), just updating the history without
any resampling results in good performance and is be�er even
than the current state-of-the-art. On other problems (e.g. TP3) this
approach performs very poorly in the absence of resampling.
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