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ABSTRACT
In many real-world situations in which resources are scarce, align-
ing the optimum of the system with the optimum of agents can be
conflicting. For instance, in traffic assignment, the system’s and the
agents’ welfare may not be aligned. In order to deal with this, in this
paper a new approach is proposed, based on a synergy between: (i)
a global optimization process in which the traffic authority employs
metaheuristics, and (ii) reinforcement learning processes that run
at each individual driver agent. Both the agents and the system
authority exchange solutions that are incorporated by the other
party in order to come up with an assignment of routes.
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1 INTRODUCTION
In many real-world problems there is a conflict between the desired
performance of the system as a whole, and the performance that its
individual components can achieve. For an example, take congestion
games: while a central authority is interested in optimizing the
average travel time, drivers are interested in optimizing their own
individual travel times. Therefore, a synergy between these two
views of an optimization problem may make sense.

In the context of optimization and multiagent learning, the lit-
erature reports some works that deal with such synergy. Bazzan
and Chira [1] have proposed a hybrid approach between a genetic
algorithm (GA) and Q-learning (QL) and applied to the traffic as-
signment problem (TAP). However, the situation in which both
the central authority and the agents can benefit was not explored.
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In contrast to the work in [1], in the present paper not only the
central authority benefits but also the individual agents. This novel
approach addresses systems in which there are individual agents
competing for resources. Similarly, in [2], co-evolution is used for
cooperative agents to achieve some system objective.

In short, the novel approach proposed here is based on a synergy
between metaheuristics and multiagent RL. Moreover, the latter
is able to deal with thousands of agents learning to use scarce
resources. This task is far from solved inmultiagent systems because
convergence guarantees do not hold when more than one agent is
learning simultaneously. Assuming that there is some sort of central
authority that aims at regulating the system or at incentivizing
individuals to take certain actions, our approach shows that an
exchange of information can improve the performance of the overall
system, as well as the performance of individual agents.

2 METHODS AND RESULTS
In a nutshell, the proposed approach is based on an algorithm (called
GA<->QL) that works by biasing solutions that are computed both
at agent level as well as at central authority level. In the former case,
the learning task is biased by a solution coming from the central
authority. In the opposite direction, the solutions to be evolved
by the central authority are biased by a solution that is assembled
using the agents’ learned actions.

The input to the algorithm is: a setA of agents (each with a set of
actions K i ); a (domain dependent) description of the environment
(fi , a function that gives agent Ai its reward depending on the
actions of other agents, fc , a function that gives the objective to
be optimized at global level); a RL method such as QL (with its
parameters’ values); a population based metaheuristic such as GA
(with its parameters such as mutation ratem and crossover c); and
∆, the frequency with which solutions are exchanged. The output
is an element of ×K i ∈ K , i.e., a set of actions, where ki ∈ K i is an
action for Ai .

Given the input, an initial population of solutions is generated
(for the metaheuristic), where an individual in this population is a
list of size n containing an action for each agentAi . In each learning
episode (for the RL), either agents learn by interacting with the
environment, or agents select an action that is recommended by the
central authority. In both cases, the agents observe their rewards,
update the value of their actions, and each informs its action to the
central authority. This assembles a candidate solution that replaces
its worst solution in the population. Then reproduction, crossover
and mutation happens and the best solution is selected, which will
eventually be recommended to the agents. This loop is repeated
until some criteria is reached.
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Table 1: Overview three networks: characteristics (columns 2–5); parameters values (6–9). Results: SO and UE known from
literature (10–11); average travel time (and std. dev.) for GA alone (column 12), for QL alone (13), and for GA under GA<->QL
approach (last column)

Results (avg. travel time)
OD GA QL Literature Our Approach

Net. |V | |E | pairs n = |A| k m α δ SO UE GA QL GA / GA<->QL
OW 24 24 4 1700 8 0.001 0.5 0.99 66.93 67.16 68.75 (.14) 67.17 (.1) 66.97 (.01)
SF 24 76 528 3606 (x100) 4 {0.01,0.001} 0.5 0.99 19.95 20.74 53.2 (1.13) 21.0 (.03) 20.83 (.02)

Braess 4 5 1 4200 3 0.01 0.5 0.99 15 20 15 (.001) 16.9 (.66) 15.02 (0.01)

As mentioned, this approach is used here to solve a TAP instance.
Given a particular traffic network, the TAP seeks to assign a demand
(trips, vehicles, driver agents) to links of the network. Therefore,
in the TAP, a solution is a route for each agent. This can be done
by computing the user equilibrium (UE), or the system optimum
(SO). The UE assumes that each driver performs adaptive route
choices until the agent perceives that all routes between its origin
and destination (an OD pair) have minimum costs. This means that
the UE is computed individually. On the other hand, the assignment
that leads to the SO is computed centrally (e.g., by an optimization
procedure, which is based, for instance, on the minimization of the
travel time over all users).

For the TAP, the synergy between the central authority (comput-
ing routes for each agent) and the learning processes by the agents,
as shown in Fig. 1: the central authority uses GA to compute the
SO and informs agents which actions are recommended in order to
achieve the SO (this is the GA→ QL part); these agents periodically
follow it, but mostly they learn to select their own actions (routes)
by means of QL, and then inform the central about these actions
(this is the QL→ GA part).

Due to lack of space, details are omitted; briefly, standard pro-
cedures for GA (with elitism) and QL (with action selection based
on ε-greedy) are used. Each chromosome of the population of solu-
tions is a list indicating one route per agent. For the QL, the actions
available to agents are the selection of one among k shortest routes.

In order to illustrate the use of the approach, the following traffic
assignment scenarios were used: the one in [1] (OW), the Braess
Paradox, and a more realistic benchmark called Sioux Falls (SF).
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1: k=3
2: k=5
...
n: k=1

...

Figure 1: Synergy between central authority using a GA to
compute the SO and agents learning to select routes using
QL.

Their characteristics are summarized in Table 1 (columns 1–5).
Please refer to the literature to see details such as cost functions
for the networks.

For each network, tests were performed to determine the best val-
ues fork (number of shortest routes),m (mutation rate), c (crossover)
and for the QL parameters such learning rate α and decay for ε
(columns 6–9) in Table 1.

Finally, this table shows the results in terms of average travel
time: from the literature (columns 10–11) and in three other situ-
ations (columns 12–14; in these cases, over 30 repetitions). First,
when only GA is used to compute an approximation for the SO. Sec-
ond, when only QL is used (this approximates the UE). Lastly, when
both GA and QL exchange solutions. The latter requires setting the
value of an extra parameter: ∆, which is the frequency with which
the GA recommends solutions to the agents. In the experiments
∆ = 10 was used.

As shown, the SO is not achieved using GA alone, especially
for the SF network. Here the GA<->QL approach is more efficient
when compared to the GA alone. As for the UE, QL alone is not
always able to reach it. In the Braess network, the GA<->QL not
only helps agents to learn to align their actions with the global
objective, but also slightly accelerates the convergence regarding
the pure QL.

3 CONCLUSIONS AND FUTUREWORK
In this paper we address the issue of aligning system and user
optima by means of metaheuristics and reinforcement learning
respectively. To this end, a synergy between these two is proposed.
We describe the use of this synergy in a particular problem related
to how to assign routes to agents in a traffic network. Our results
show that this synergy is able to find better solutions.
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