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ABSTRACT
k-means is one of the most commonly used clustering algorithms
in data mining. Despite this, it has a number of fundamental lim-
itations which prevent it from performing e�ectively on large or
otherwise di�cult datasets. A common technique to improve per-
formance of data mining algorithms is feature construction, a tech-
nique which combines features together to produce more powerful
constructed features that can improve the performance of a given
algorithm. Genetic Programming (GP) has been used for feature
construction very successfully, due to its program-like structure.
�is paper proposes two representations for using GP to perform
feature construction to improve the performance of k-means, using
a wrapper approach. Our results show signi�cant improvements
in performance compared to k-means using all original features
across six di�cult datasets.
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1 PROPOSED METHOD
GP has been widely used to perform feature construction (FC) in
classi�cation tasks, but li�le work has applied GP to FC in clustering
tasks. �is work proposes a new approach for performing FC using
a GP wrapper approach for clustering.

In the majority of GP work, each individual contains a single
tree which outputs a single value (i.e. a single constructed feature).
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More than one constructed feature is needed to split a dataset into
a large number of clusters e�ectively. In the following subsections
we propose two representations for constructing multiple features
in a single GP individual. In both representations, only the con-
structed features produced by an individual are used by thek-means
algorithm.

1.1 Multi-Tree Representation
In a multi-tree representation, each individual contains multiple
trees, each of which produces a single constructed feature. �e
function set contains standard arithmetic operators (+,−,×,÷, | +
|, | − |) as well asmax andmin functions. Each operator takes two
inputs and produces a single output. ÷ is protected division; it
returns 1 if the divisor is 0. An i f function is also used, which
takes three inputs and returns the second input if the �rst input is
positive, or the third input otherwise. �e terminal set comprises of
the features of the dataset, and a random double terminal drawing
from the range [0, 1]

To perform crossover between two individuals, a random tree
is selected from each individual, and then a random sub-tree from
each selected tree. Crossover is then performed between the sub-
trees as normal. Mutation is performed by choosing a random tree
in an individual, and then performing mutation as normal.

�is approach requires the number of trees, t , to be set in advance
and uses multi-tree crossover, which can decrease the e�cacy of the
crossover process. �e following section proposes an alternative
approach where only a single tree per individual is used.

1.2 Vector Representation
To produce multiple constructed features from a single tree, we
propose using a vector representation, where a tree outputs a vector
of constructed features.

�e function set used in this approach is similar to that of the
multi-tree approach; however, each function is altered to instead
take two vectors as input and produce a single output vector. Each
function node applies its function pair-wise to each element of
the input vectors, producing an output vector equal in length to
the shorter of the two input vectors. In addition, a concat func-
tion is used to allow vectors of varying length to be automatically
constructed, which allows GP to automatically construct an appro-
priate number of features. �is function takes two vector inputs
and produces an output equal to appending the second vector to the
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end of the �rst. �e terminal set is unchanged from the multi-tree
approach, with each terminal outpu�ing a vector of length one.

1.3 Fitness Function
One of the most popular �tness functions in clustering literature
minimises the intra-cluster variation [1] (i.e. the distance between
instances in the same cluster), as shown below:

∑
Intra =

K∑
i=1

∑
Ia ∈Ci

d (Ia ,Zi ) (1)

where Ci is the ith cluster, Ia ∈ Ci is an instance in the ith cluster
and Zi is the mean of the ith cluster. Minimising this function
encourages compact clusters, but is biased towards hyper-spherical
clusters as distance is minimised to the cluster mean.

An alternative approach is to instead use a �tness function which
considers connectedness. Connectedness measures how well in-
stances which are close to each other are allocated to the same
cluster; if instances are similar, they should be in the same cluster.
�e mean connectedness can be computed as follows:

Connectedness = 1
K

K∑
i=1

1
|Ci |

∑
Ia, Ib ∈Ci

dinverse (Ia , Ib ) (2)

dinverse (Ia , Ib ) =min
[ 1
d (Ia , Ib )

, 10
]

(3)

Maximising the above �tness function encourages clusters to con-
tain instances that are close together.

2 EXPERIMENT DESIGN
Six di�cult synthetic datasets were used to evaluate the proposed
methods, chosen from the widely used datasets provided by Handl
et al. [2]. �ree of these datasets (50d10c, 50d20c, 50d40c) con-
tain 50 features; 10,20, and 40 classes; and 2699, 1255, and 2335
instances respectively. �e remaining three datasets (100d10c,
100d20c, 100d40c) contain 100 features; 10, 20, and 40 classes; and
2893, 1339, and 2212 instances respectively. �e six datasets were
scaled so features had values in [0, 1] to prevent feature range from
biasing training. A range of synthetic and real-world datasets were
used to comprehensively evaluate the proposed methods. Datasets
were scaled so that each feature had values between zero and one,
to prevent bias towards features with large ranges.

Each of the two proposed representations were tested with each
of the two �tness functions on the above six datasets. k-means using
all of the original feature set was also tested on the six datasets as
a baseline. Each method was run 30 times using di�erent seeds to
account for the stochastic nature of GP and k-means. Standard GP
parameters were used, with a population size of 1,024, crossover
and elitism rates of 80% and 20%, and top-10 elitism. t = 7 is used
for the multi-tree approach. Each method is run for 100 iterations.

We evaluate each method using a variation of the F-measure,
which measures how well the clusters produced match the “gold-
standard” reference clusters provided by the dataset authors. Each
pair of instances in the dataset is considered in turn. If both in-
stances are in the same reference cluster, then they are a true pos-
itive (TP) if they fall in the same produced cluster, and a false

Table 1: F-measure performance on the datasets

Method 50d10c 50d20c 50d40c 100d10c 100d20c 100d40c

MTConn 0.5167+ 0.4996+ 0.4397+ 0.5311 0.4657+ 0.4629+
MTIntra 0.4785− 0.4776+ 0.4269+ 0.5825+ 0.4598+ 0.462+
VectorConn 0.5005 0.4832+ 0.4106+ 0.5446 0.4451+ 0.4418+
VectorIntra 0.4795− 0.4351+ 0.3759+ 0.5854+ 0.4331+ 0.4028+
k-means AF 0.4939 0.3823 0.2618 0.5255 0.3800 0.2675

negative (FN) otherwise. If the two instances are in di�erent refer-
ence clusters, they are a true negative (TN) if they fall in di�erent
produced clusters, and a false positive (FP) otherwise.

3 RESULTS
Table 1 shows the mean F-measure performance of the four pro-
posed GP methods and k-means (using all features (AF)) on the
datasets described previously. �e multi-tree approaches using
connectedness and ∑ Intra are notated as MTConn and MTIntra.
�e vector approaches are notated as VectorConn and VectorIntra.
Each GP result is labelled with a “+” or a “−” if it is signi�cantly
be�er or worse than the k-means baseline according to a Student’s
t-test performed with a 95% con�dence interval.

�e four GP methods are signi�cantly be�er than normal k-
means in 79% of results, and signi�cantly worse in only 2 results,
on the easiest 50d10c dataset. Normal k-means clearly performs
poorly on the datasets with 20 or 40 clusters, where the dataset must
be split into a large number of di�erent groups. �e GPmethods are
able to produce more powerful constructed features to overcome
the limitations of k-means on these datasets.

�e connectedness �tness measure is slightly be�er than∑ Intra
on most datasets with the exception of 100d10c. �e multi-tree
approach also generally outperforms the vector approach, again
with the exception being the 100d10c dataset.

4 CONCLUSION
�is work proposed two approaches to using GP for constructing
multiple features on k-means using a wrapper technique. In ad-
dition, two potential �tness functions were tested to investigate
how k-means could be improved by using alternative measures
of cluster quality. All of the representations and �tness functions
showed a signi�cant improvement over normal k-means across a
range of hard clustering datasets.

�e proposed methods could be further extended in future work,
by developing novel �tness functions to allow k-means to work
well on a range of di�erent types of datasets, and by extending the
vector or multi-tree approaches to be used when K is not known in
advance. It would also be useful to investigate a way of determining
the number of trees in the multi-tree approach automatically.
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