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ABSTRACT1 

The MCA tuning problem consists in finding the best values for 

the parameters/coefficients of Motion Cueing Algorithms (MCA). 

MCA are used to control the movements of robotic motion 

platforms employed to generate inertial cues in vehicle simulators. 

This problem is traditionally approached with a manual pilot-in-

the-loop subjective tuning, based on the opinion of several 

pilots/drivers. Instead, this paper proposes applying Particle 

Swarm Optimization (PSO) to solve this problem, using simulated 

motion platforms and objective indicators rather than subjective 

opinions. Results show that PSO-based tuning can provide a 

suitable solution for this complex optimization problem. 
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1 INTRODUCTION AND RELATED WORK 

Motion Cueing Algorithms (MCA) are used in vehicle simulators 

to control the behavior of motion platforms. They take (as input) 

the simulated physical state of the vehicle and they provide (as 

output) the desired pose for the motion platform in the form of 

rotational and translational degrees of freedom (DOF) [1]. 
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The evaluation of these algorithms is based on a measure of 

motion fidelity [2]. Since the motion platform is unable to 

replicate the motion of the simulated vehicle, the self-motion 

system needs to control what parts of this motion are eliminated 

and what parts are not. This is almost always controlled by a 

series of parameters/coefficients of the MCA that need to be tuned 

before it is used in the simulator. These parameters substantially 

modify the behavior of the MCA, so it is essential to find a 

method to tune them. In the case of the classical MCA algorithm 

[3], which is the one used in the experiments of this work, the 

parameters and their meanings can be found in [4], [5]. 

The tuning of MCA is usually performed with the pilot-in-the-

loop approach. This method implies executing successive tests on 

the simulator with a pilot/driver and an expert changing, in real-

time, the parameters of the MCA in reaction to the comments of 

the pilot/driver. The process is not systematic and is repeated until 

the user is satisfied with the result (if that happens). For this 

reason, a systematic automatic solution based on objective 

evaluations is proposed in [6]. This proposal substitutes the 

subjective evaluation by the calculation of objective motion 

fidelity metrics/indicators, which are calculated upon the 

execution of a simulation of the motion platform movements with 

a Genetic Algorithm (GA). This solution represents a promising 

approach, but it would be advisable to test if better optimization 

strategies can be found. For this reason, this work proposes to use 

a different heuristic that has also proven to be capable of solving 

optimization problems with vast search spaces: Particle Swarm 

Optimization (PSO) [7]. PSO has been used for parameter tuning 

in other algorithms [8] and even for MCA [9] with a different 

approach. PSO is easy to implement, and the adaptation of this 

heuristic to this problem is feasible. 

2 MATERIALS AND METHODS 

The PSO heuristic can be adapted to the MCA tuning problem. 

Let us consider each t-uple t of parameters of the MCA as a 

particle, which contains possible values for each of the parameters 

of the MCA. The particle can be represented by a sorted sequence 

of the MCA parameter values: t[1], t[2], … t[i], … t[n]. Thus, the 
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values of t can be seen as a vector representing the position of the 

particle in the parameter space in which the optimization 

algorithm searches. To perform the optimization and search for 

the best set of values for the parameters, an evaluation/fitness 

function f(w, t) is needed, where w is the MCA used, and t is the t-

uple of parameters. The evaluation function returns a motion 

fidelity indicator for the MCA with this configuration (i.e., with 

this set of values for the parameters). The rationale and details of 

the motion fidelity indicators used in this paper are explained in 

[5]. Although an actual motion platform can be used to evaluate 

its performance by means of objective indicators, the proposed 

method is to use a virtual motion platform instead of a physical 

one. With this decision, the motion fidelity indicators can be 

calculated faster than real-time. The details of the motion platform 

simulator can be found in [10] and are not the focus of this paper. 

The PSO-based solution implements the PSO algorithm as 

described in [7]. It evaluates each particle and stores the following 

information: the position of the particle that provides the best 

global indicator, the indicator itself, the best local indicator and its 

position. The positions of the particles are updated following the 

best rule proposed by Kennedy & Eberhart in [7]. 

3 EXPERIMENTS AND RESULTS 

After performing successful correctness tests that demonstrate that 

the PSO implementation is correct and analyze the effect of 

population size, this value was set to 30 particles. This is the only 

parameter that needs to be setup for PSO, compared with four, in 

the case of the GA implementation in [6]. 

In order to draw conclusions on the performance of the PSO 

and analyze its behavior for different motion fidelity indicators, a 

comparative test is presented. For this experiment, a virtual 6-

DOF motion platform, with 96-second MCA input signals, is 

used. These signals (only specific force and angular velocity are 

recorded) are extracted from an open-wheel Formula 3 vehicle in 

one lap of the Monaco Grand Prix circuit using the rFactor racing 

simulator. 18 parameters of the MCA are allowed to be 

varied/tuned, and the search time is set to 1000 seconds. The 

computer running the experiments is an Intel Pentium G840 at 

2.80 GHz, with 8 GB of RAM and Windows 7 operating system. 

Several motion fidelity indicators are used: NPC, NAAD, AAS, 

ED and a multiplicative combination of AAS, NAAD and NPC 

[5]. The 6-DOF motion platform capabilities can also be seen in 

[5]. For this experiment, PSO is compared against the GA (set-up 

as in [6]) and a Monte-Carlo algorithm (MC). The results of the 

experiment are depicted in Table 1. Since the three optimization 

algorithms are probabilistic, 50 repetitions of each test are 

performed in order to calculate average values. 

Results show that the PSO-based solution is the preferred 

choice in every case. With the combined indicator, the PSO 

algorithm reveals itself as a much more efficient solution than the 

GA-based solution, something that can be said for the rest of 

motion fidelity indicators but gets clearer with this one. 

As a final note, it is important to emphasize that further 

experiments, not shown here for the sake of brevity, reveal that 

neither the robotic motion platform seems to have influence in the 

performance of the optimization algorithm, nor does the motion 

fidelity indicators, since the results are rather consistent for the 

different configurations tested. They also show that this approach 

converges faster than the GA for this problem. 

 

Table 1: Compared 6-DoF performance. 

 

Motion Fidelity Indicator MC GA PSO 

NPC 1.291992 1.265862 1.263993 

NAAD 1.171382 1.168722 1.162953 

AAS 5.852526 4.695831 3.169515 

ED 1.181666 1.115000 1.100000 

Combined 9.638290 8.171634 5.844439 

4 CONCLUSIONS AND FUTURE WORK 

The MCA tuning problem can be approached and solved, in 

certain circumstances, by using optimization techniques, instead 

of the traditional subjective pilot-in-the-loop solution. The major 

benefit of this approach is to accomplish an automatic and 

unattended method to obtain the best values for the parameters of 

a motion cueing algorithm. In this regard, PSO provides better 

results than a previously published GA, as the performed 

experiments have proven. It is true that the amount of 

improvement in terms of average indicators is sometimes small, 

but PSO is easier to tune, as only one parameter (the number of 

particles) needs to be set. In addition, PSO can provide a 

satisfactory solution earlier than GA, which can be extremely 

important if the motion platform is used for entertainment or 

unregulated training, where the MCA parameters may have to be 

adjusted if a different track, vehicle or even simulator is used. 

Future work includes looking for different strategies, such as 

expensive black-box optimization. It would be also interesting to 

compare the performance of PSO for different vehicles, for 

different simulators, or objective indicators. 
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