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ABSTRACT
Clinical trials are an essential step in a new drug’s approval process.
Optimisation of patient recruitment is one of the major challenges
facing pharma and contract research organisations (CRO) in con-
ducting multicentre clinical trials. Improving the quality of selec-
tion of investigators/sites at the start of a trial can help to address
this business problem. Grammatical Evolution (GE) was previously
used to evolve classi�cation models to predict the future patient
enrolment performance of investigators/sites considered for a trial.
However, the unknown target misclassi�cation costs at the model
development stage pose additional challenges. To address them
we use a new composite �tness function to develop a multi-model
system of decision-tree type classi�ers that optimise a range of
possible trade-o�s between the correct classi�cation and errors.
�e predictive power of the GE-evolved models is compared with a
range of machine learning algorithms widely used for classi�cation.
�e results of the study demonstrate that the GE-evolved multi-
model system can help to circumvent uncertainty at the model
development stage by providing a collection of customised models
for rapid deployment in response to business needs of a clinical
trial.
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1 INTRODUCTION, PROBLEM DEFINITION
AND BACKGROUND

Patient recruitment is the most time and resource consuming part
of the majority of clinical trials [9]. In previous work we employed
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GE [7] to evolve classi�cation model capable of predicting enrol-
ment performance of clinical sites [3]. We have shown that GE is
capable of evolving classi�ers that are comparable or even be�er
than results of the benchmark machine learning (ML) algorithms.
However, standard accuracy �tness function does not take into
account class distribution. In most real-life patient recruitment
situations, classes are unbalanced and misclassi�cation costs are
di�erent and neither characteristic is known at the model devel-
opment stage. For such situations [8] proposed an idea of a robust
hybrid classi�er, the idea further developed by [1, 4, 6].

In this study we identify a range of potentially acceptable mis-
classi�cation costs/thresholds for the negative class and use GE to
evolve a system of models that accommodate these costs. To achieve
this we develop a �tness function capable of accommodating to
varying False Positive Rate (FPR) thresholds .

2 EXPERIMENTS, RESULTS AND ANALYSIS
�e dataset was described previously in [3] and constructed based
on the anonymised historical operational data provided by ICON
plc (1233 records, 42 variables describing di�erent characteristics
of prospective investigator/site). �e sites were allocated to two
classes based on their patient recruitment performance. �e data
was split into train/test subsets (70/30%) and GE was used to evolve
decision-tree type classi�ers. �e best of run GE models were tested
to ascertain their generalisation ability. �e GE grammar (similar
to [3]) used the function and terminal set detailed in Table 1. �e
evolutionary parameters used were: population 1000 individuals,
50 generations, ramped-half-and-half initialisation, tournament
selection (size 5), generational replacement, elite size 1, sub-tree
crossover (90% probability), sub-tree mutation (1 event/individual),
maximum tree depth 9, 30 independent runs.

We introduced a new �tness function to facilitate evolving so-
lutions that maximise performance in terms of True Positive Rate
(TPR) (True Positive/Condition Positive) given FPR (False Posi-
tive/Condition Negative) cut-o� value:

Fitness =



TPR if FPR ≤ cut-o�
−FPR if FPR > cut-o�

Depending on the business environment, the site selection might
bene�t from either more conservative or more liberal models. We in-
vestigated four FPR cut-o� values: 0.2, 0.3, 0.4, 0.5. �e best evolved
GE models were benchmarked against three well-established ML
algorithms - Classi�cation and Regression Tree (cart), Random
Forest (rf) and Gaussian Support Vector Machines (svm). �e
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Table 1: Function and terminal sets of GE classi�er

Function set Terminal set
+,−, ∗, /,∧,∨,¬ 35 numerical variables: x0, …, x34
=,, 3 categorical variables: x35, x36, x37
<, >, ≤, ≥ 4 Boolean variables: x38, …, x42

20 constants in -1.0, …, 1.0 with 0.1 step

Figure 1: GE classi�cation experiments. Best training �tness
of GEmodels evolvedwith 4 FPR cut-o�s (le�), �tness of the
30 best-of-run GE classi�ers on the training data (middle)
and on the test data (right)

ML models were trained and tuned using 10 times 10-fold cross-
validation using AUC and 0.5 class threshold (R CARET package,
parameter se�ings: cart (cp = 0); rf (#predictors = 13); svm
(σ = 0.0000129, cost = 512)).

�e best (Fig. 1 le�) and average population �tness increased over
50 GE generations. �e median training performance of the 30 best
classi�ers evolved with each FPR cut-o� was 0.52, 0.64, 0.73, and
0.83 respectively (Fig. 1 middle). As expected, in comparison with
the median performance on the train subset, the median TPR levels
achieved by these models on the test subset were lower (0.49, 0.62,
0.67, 0.78 respectively), re�ecting the challenge of generalisation
(Fig. 1 right).

Training/test AUCs of the ML models were as follows: cart -
0.846/0.750, rf - 0.966/0.742, svm - 0.859/0.710. Class thresholds to
satisfy FPR cut-o�s based on the training data were selected and
then applied to classi�cation of the test data.

�e results (Table 2) show that in all four experiments GE-
evolved models maintain their positioning around FPR cut-o�
values more consistently than ML models with pre-selected class
thresholds (in bold - actual FPR levels within ±0.05 of the desired
FPR levels). Apart from the 0.2 FPR cut-o� experiment, GE models
achieve the highest TPR between models maintaining FPR posi-
tioning (in bold). Taken together, results of this study demonstrate
that use of the new �tness function with di�erent FPR cut-o�s to
drive GE generates models that uphold these FPR cut-o�s on the
test data.

2.1 Conclusions
�is study approached the business problem of improving patient
recruitment in multicenter clinical trials by developing predictive
classi�cation models of future performance of clinical sites. �is
problem is complicated by the unknown and/or changing misclassi-
�cation costs. We used GE with a new �tness function that incorpo-
rates FPR threshold to evolve a system of classi�ers that maximise

Table 2: Performance of models developed with di�erent
FPR cut-o�s on test

Model Metric 0.2 0.3 0.4 0.5 cut-o�
ge TPR 0.59 0.72 0.75 0.83
ge FPR 0.19 0.32 0.42 0.48

cart TPR 0.66 0.71 0.73 0.79
cart FPR 0.24 0.30 0.36 0.44
rf TPR 0.76 0.80 0.85 0.89
rf FPR 0.32 0.43 0.54 0.64

svm TPR 0.66 0.71 0.72 0.82
svm FPR 0.33 0.38 0.39 0.55

correct identi�cation of the class of interest while maintaining
di�erent levels of the other class misclassi�cation. �e resultant
models show generalisation levels comparable with or even bet-
ter than the well-established ML models, while maintaining the
required levels of misclassi�cation.

�e same problem can be re-cast as a multi-objective optimi-
sation problem. Several recent studies successfully used Evolu-
tionary Multi-objective Optimisation (EMO) to solve similar prob-
lems [1, 2, 4–6]. We will investigate utility of an EMO approach in
future work.
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[4] Clément Chatelain, Sébastien Adam, Yves Lecourtier, Laurent Heu�e, and �ierry
Paquet. 2010. A Multi-model Selection Framework for Unknown and/or Evolutive
Misclassi�cation Cost Problems. Pa�ern Recogn. 43, 3 (March 2010), 815–823.
DOI:h�p://dx.doi.org/10.1016/j.patcog.2009.07.006

[5] Rui Dilão, Daniele Muraro, Miguel Nicolau, and Marc Schoenauer. 2009. Valida-
tion of a Morphogenesis Model of Drosophila Early Development by a Multi-
objective Evolutionary Optimization Algorithm. In Evolutionary Computation,
Machine Learning and Data Mining in Bioinformatics. EvoBIO 2009. Lecture Notes
in Computer Science, vol 5483, Clara Pizzuti, Marylyn D. Ritchie, and Mario
Giacobini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 176–190.

[6] Julien-Charles Levesque, Audrey Durand, Christian Gagne, and Robert Sabourin.
2012. Multi-objective Evolutionary Optimization for Generating Ensembles of
Classi�ers in the ROC Space. In Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA,
879–886.

[7] Michael O’Neill and Conor Ryan. 2003. Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Language. Genetic programming, Vol. 4.
Kluwer Academic Publishers.

[8] Foster Provost and Tom Fawce�. 2001. Robust Classi�cation for Imprecise
Environments. Machine Learning 42, 3 (2001), 203–231. DOI:h�p://dx.doi.org/
10.1023/A:1007601015854

[9] Peter Schuler and Brendan Buckley. 2014. Re-Engineering Clinical Trials: Best
Practices for Streamlining the Development Process. Academic Press.

264

http://dx.doi.org/10.1016/j.patcog.2015.10.010
http://dx.doi.org/10.1016/j.patcog.2015.10.010
http://dx.doi.org/10.1109/TEVC.2012.2199119
http://dx.doi.org/10.1109/TEVC.2012.2199119
http://dx.doi.org/10.1007/978-3-319-31204-0
http://dx.doi.org/10.1016/j.patcog.2009.07.006
http://dx.doi.org/10.1023/A:1007601015854
http://dx.doi.org/10.1023/A:1007601015854

	Abstract
	1 Introduction, Problem definition and background
	2 Experiments, Results and Analysis
	2.1 Conclusions

	Acknowledgments
	References

