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ABSTRACT

We propose a modified box constraint handling technique for the

covariance matrix adaptation evolution strategy (CMA-ES).�e ex-

isting box constraint handling turns the box-constrained optimiza-

tion problem into an unconstrained optimization by introducing

an artificial fitness landscape, where a penalty function is added

to the function values at the nearest feasible solutions. By adapt-

ing the penalty coefficients, that determine the sensitivity of con-

straints over the objective function value, it creates a reasonable

virtual function landscape outside the feasible domain. In this pa-

per, we address the issue of the original box constraint handling

technique that it performs slow adaptation of the penalty coeffi-

cients when the objective function scales non-quadratically, in par-

ticular when the objective function scales exponentially. �e op-

timization is then stagnated until reasonable penalty coefficients

are achieved. It is due to a relatively long history of the dispersion

measure of the objective function values and the adaptation of the

penalty coefficients using the median of the history. In the pro-

posed algorithm, we look at a recent subsequence of the history

when the dispersion measures in the history differ significantly.

�e current dispersion of the objective values is then estimated us-

ing the median of the computed subsequence of the history. Exper-

imental results reveal that the proposed algorithm can converges

without stagnation on a function with exponential factor, where

the original algorithm exhibits stagnation.
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1 CMA-ES

�e covariance matrix adaptation evolution strategy (CMA-ES) [1,

2] samples λ candidate solution xi , for i = 1, . . . , λ, from the multi-

variate normal distributionN(m,σ2C), wherem ∈ Rn is the mean

vector, σ > 0 is the step-size, and C ∈ Rn×n is the covariance ma-

trix. �ese distribution parameters are updated by using the candi-

date solutions and their ranking information. �e CMA-ES repeats

the following steps until a termination criterion is satisfied.

Step 1. Draw λ samples xi independently fromN(m,σ2C).
Step 2. Evaluate the candidate solutions xi on the fitness func-

tion L, and sort them in the ascending order. �e fitness function

L is the objective function f if the problem is unconstrained.

Step 3. Update the distribution parametersm, σ and C based

on the candidate solutions and their ranking information.

2 BOX CONSTRAINT HANDLING

In the following, we consider the minimization of f : Rn → R
under the box-constraint, [LB]i 6 [x]i 6 [UB]i for i = 1, . . . ,n.

For simplicity of notation, we write the feasible domain as x ∈
[LB, UB]. We do not require that the objective function is defined in

the infeasible domain, i.e., f (x) for x < [LB, UB] can be undefined.

�e box constraint handling proposed in [3]1 creates an artifi-

cial fitness landscape, L, over the infeasible domain. To create an

artificial fitness in the infeasible domain, the penalty, fp , is added

to the objective function value at the closest feasible point, x feas.

Artificial Fitness with Adaptive Penalty. �e fitness of a solution
is defined as follows. If the solution x is feasible, the fitness is
equal to the objective function value, L(x) = f (x). If the solution
is infeasible, the closest (in the Euclidean sense) feasible solution
is first computed as follows

[x feas]i = [LB]i (if [x ]i < [LB]i ), [UB]i (if [UB]i < [x ]i ), [x ]i (otherwise). (1)

�en, the penalty is computed as follows

fp (x ) = 1
n

∑n
i=1 γi ([x ]i − [x feas]i )2 , (2)

where γi (i = 1, . . . ,n) are the penalty coefficients adapted by the
box constraint handling algorithm. �en, the fitness of x is defined
as the sum of the objective function value and the penalty, namely

L(x ) = f (x feas) + fp (x ) . (3)

Adaptation of the penalty coefficients. �e penalty coefficients,

γ = (γ1, . . . ,γn) ∈ Rn , are initialized as γi = 0, for i = 1, . . . ,n.

�e following adaptation steps are performed every iteration a�er

the sampling step in CMA-ES.

1In this paper, we apply the correction and minor modifications of the algorithm,
described in the author version. See h�ps://www.lri.fr/∼hansen/TEC2009online.pdf
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Step 1. Update IQRhistoryCompute the normalized interquar-
tile range (IQR) of the objective function values as

δ f ≔ IQR(f (x feas
1 ), . . . , f (x feas

λ ))/
(

σ 2Tr(C )/n
)

(4)

and keep it for 20 + ⌊3n/λ⌋ iterations.
Step 2. Set penalty coefficients Ifm is infeasible and either

the penalty coefficients were not set yet or t = 2, set

γi = 2 · δfit, ∀i = 1, . . . , n , (5)

where δfit ∈ R is the median of the history of δ f .

Step 3. Update penalty coefficients For each i (i = 1, . . . ,n),

update penalty coefficients according to the following.
(a) Increase If the i-th coordinate of the mean vector is infea-

sible, compute the distance to the closest boundary normalized by
the standard deviation of i-th coordinate, namely,

δmi ≔ |[m]i − [mfeas]i |/(σ
√

Cii ) , (6)

wheremfeas is the feasible point closest tom that is computed by
(1), and Cii ∈ R is the i-th diagonal element of the covariance
matrix. �en, increase each penalty coefficient according to

γi ← γi · exp((dγ /2) tanh(max(0, δmi − δth)/3)) , (7)

where we set dγ = min (1, µw/10n) and δth = 3 ·max(1,
√
n/µw).

(b) Decrease If γi > 5δfit, γi is decreased according to

γi ← γi · exp
(

−dγ /3
)

. (8)

3 MODIFIED BOX CONSTRAINT HANDLING

Trimmed Median. �e search efficiency sometimes deteriorates

remarkably in the original box constraint handling (Orig-BCH).

�e cause of the deterioration is that the history of the normal-

ized inter-quartile range (δ f ) is too long and the median δfit of the

history not a reasonable estimate of the current δ f . To estimate

δfit more properly, we compute the trimmed median (trimmed)

which is the median of the last K iterations.

Let δ f[:] be the history ofδ f in (4) of length 20+⌊3n/λ⌋. Let δ f[i ]
denote the δ f at the i-th to last iteration, i.e., δ f[1] is the current
δ f (at iteration t ), δ f[i ] is δ f at iteration t +1−i . Let δ f[j :k] denote
the subsequence of the history from index j to index k . Let med3
be the median δ f in the last 3 iterations, namely, median(δ f[1:3]).

Let T be the length of the δ f history, i.e., T = min(t , 20 +
⌊3n/λ⌋). If T 6 3, the trimmed returns the median of the history,

trimmed(δ f[:] ) = median(δ f[1:T ] ). If T > 3, the trimmed is com-

puted as follows. (1) Compute med3. (2) Find the maximum K 6 T

such that |ln(δ f[k]) − ln(med3)| < ln(5) for all k ≤ K . (3) �en,

trimmed(δ f[:]) = median(δ f[1:K ]).

Modified Penalty Coefficients Reduction. �e other reason of the
deterioration in Orig-BCH is due to slow reduction of the penalty
coefficients in (8). Note that once (8) is performed, it is kept per-
formed until γi < 5δth. To speed up the reduction, we replace
Step 3(b) of Orig-BCH with the following

γi ← γi ·min(3 · trimmed(δ f[:] )/( 1n
∑n
j=1 γj ), 1) for all i . (9)

If the mean of the penalty coefficients is equal to or greater than

three times the trimmed(δ f[:]), all the penalty coefficients are re-

duced by the same factor so that the mean of the penalty coeffi-

cients is three times the trimmed(δ f[:]). Step 3(b) of Orig-BCH

makes the scale between penalty coefficients close to 1, while (9)

reduces all the penalty coefficients evenly so that it is possible to

keep the scale between already learned penalty coefficients.

Table 1: Benchmark function suite.

Sphere fsph(x )
∑n
i=1[x ]2i

Ellipsoid fell(x )
∑n
i=1 10

6 i−1n−1 [x ]2i
TwoAxes ftwoax(x )

∑n
i=1

{

106[x ]2i if i is even

[x ]2i otherwise

Exponential fexp(x )
∑n
i=1

{

exp(20([xi ] − 1)) if [x ]i > 1

[x ]2i otherwise

Figure 1: �emedian and 25%tile and 75%tiles of ∆ f over 100

trials on 20 dimensional fsph, fell, ftwoax and fexp.

4 EXPERIMENTS

Table 1 summarizes the definitions of the test functions. �e fol-

lowing box-constraint is considered LB = [−0.1, 0.1, . . . ,−0.1, 0.1],
UB = LB + [5, . . . , 5]. �e global optimal solution is located at

x∗ = [0, 0.1, . . . , 0, 0.1], that is, the optimum exists on the bound-

ary of the feasible domain for the even-numbered coordinates, and

it exists in the feasible domain for the odd-numbered coordinates.

�e globalminimum is denoted by f ∗ = f (x∗). �e initial step-size

σ (0) = 1.25 = UB−LB
4 , mean vectorm(0) = [2.4, 2.6, . . . , 2.4, 2.6] =

UB+LB
2 , covariance matrix C(0) = I for all cases. Note that fexp has

the same function landscape as fsph around the optimal solution.

�e function looks different only at the beginning of the search,

though we will observe different behavior of Orig-BCH on these

problems.

Figure 1 shows the median, the lower-quatile and the upper

quartile over 100 trials of Orig-BCH and Modified Box Constraint

Handling (Mod-BCH) on constrained fsph, fell, ftwoax and fexp.

From the result of fexp, we can observe that the search efficiency

deteriorates remarkably a�er themiddle of the search in Orig-BCH.

�e reason for this is that the penalty coefficients decrease slowly.

On the other hand, Mod-BCH converges at high speed. Further-

more, it exceeds the Orig-BCH in all functions.
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