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ABSTRACT
This paper applies three genetic algorithms, combined with math-
ematical programming technique, to solve a production planning
problem in the Glass Containers Industry (GCI). The problem to
be solved takes into account the scenario where one new furnace
and the related machines must be added to the industrial plant. A
mathematical formulation is introduced to de�ne objectives and
constraints for such problem. The results achieved indicate that
the proposed model as well as the genetic algorithms are able to
provide good quality solutions for such problem.
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1 INTRODUCTION
The production process in a Glass Container Industry (GCI) is
usually composed by two main stages. In the �rst stage, the compo-
nents constituting the glass as grit, kelp, limestone, oxides and glass
recyclables are melted by furnaces. The �nal products (containers)
are produced by molding machine in the second stage [1]. The
present work is motivated by the installation of a new furnace in
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a single production plant and evaluates decisions related to the
con�gurations of machines. A machine is connected to a single
furnace from which the glass paste is received. Moreover, a furnace
can feed multiple machines connected to it. The con�gurations of
machines need to be de�ned following the demand forecast within a
time horizon. This problem will be named GCI with a New Furnace
(GCIP-NF).

2 MATHEMATICAL MODEL
Parameters:

• m: Machines available (m = 1, ..., M ).
• i : Products to be manufactured (i = 1, ..., I ).
• a: Annual Time horizon (a = 1, ..., A).
• NSm : Number of sections by machine m.
• TGm : Type of gob by machine m.
• ACim : 1 if product i is accepted in the machine m.
• Cm : Cost to install machine m. ($)
• Dia : Demand expected of product i in period a. (ton)
• Wi : Weight of product i . (ton)
• Ri : E�ciency of the cavity for product i . (bottles/min)
• M : Maximum machines supported by the new furnace.
• CF : Cost to install fuse capacity on furnace. ($/ton)
• ηm : E�ciency of machine m. (%)

Variables:
• KF : Melting capacity required for the furnace. (ton)
• Qima : Lot size of product i on machine m in the period a. (ton)
• Fima : Time spent on period a in which machinem was dedicated

to produce product i . (years)
• Ym : 1 if the machine m is installed, 0 otherwise.

Formulation:

Min f (KF , Y 1, ..., YM ) = CF ∗ KF +
M∑
m=1

Cm .Ym (1)

Subject to:
M∑
m=1

Ym ≤ M (2)

Fima ≤ Ym ∀(i,m, a) (3)
Fima ≤ ACim ∀(i,m, a) (4)∑
i

Fima = Ym ∀(m, a) (5)

Qima = Fima .(Ri .Wi .NSm .TGm .ηm ) ∀(i,m, a) (6)
a∑
τ=1

∑
m

Qimτ ≥
a∑
τ=1

Diτ ∀(i, a) (7)
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∑
i

∑
m

Qima ≤ KF ∀(a) (8)

KF , Qima, Fima ≥ 0 (9)
Ym ∈ {0, 1} (10)

3 METHODS
A total of four methods are applied to solve instances of the GCIP-
NF: Branch-and-Cut (B&C) algorithm available in the commercial
Solver CPLEX, a simple genetic algorithm (GA) and two multi–
populations genetic algorithms with a tree structure (t–GA) and a
grid structure (g–GA) [3], respectively, as shown by Figure2. All
genetic algorithms encode the binary variables of GCIP-NF model
as individual and the objective function (1) is set as �tness function.
Thus, the other variables on GCIP–NF are optimally de�ned by
solving the related linear programming model. Figure 1 illustrates
individuals and operators.

Y1 Y2 Y3 Y4 ... YM-2 YM-1 YM
ind 0 1 0 1 - 1 0 0 Initialization

ind1 0 1 0 0 - 0 1 1
ind2 1 0 0 1 - 0 1 0

child 0 1 0 1 - 0 1 0

muted 0 0 0 1 - 1 1 0 Mutation

Crossover

Figure 1: Individuals and genetic operators.

Cluster

Leader

Supporters

Individual

Neighbors

Figure 2: Tree and grid structures.

4 RESULTS
The mixed integer linear programming model proposed and genetic
algorithms are coded using the toolbox Professional Optimization
Framework (ProOF) [2] integrated with IBM ILOG CPLEX 12.6.
The computational tests are performed on a computer with an Intel
Xeon E5-2680v2 de 2.8 GHz and 128 GB RAM, and operating system
Linux. The methods t–GA, g–GA and GA are set with crossover
and mutation rates of 3.0 and 0.7, respectively. The crossover rate
means a total of (crossoverrate) ∗ (populationsize) new individuals
evaluated at each generation. The population size is 39, where
t-GA and g-GA evolve 3 populations with 13 individuals. The
methods are evaluated from a total of 200 instances, 50 in each
set of small instances SFM and SHT as well as large instances
LFM and LHT. The parameters applied to generate SFM instances
are M ∈ {100, 200, 300, 400, 500} with T = 8 and M = 300 with
T ∈ {4, 6, 8, 10, 12} for SHT. The parameters for LFM subset are

M ∈ {1000, 2000, 3000, 4000, 5000} withT = 8, while M = 3000 with
T ∈ {4, 6, 8, 10, 12} for LHT. The time limit is 3600 seconds to run
each method only once. The performance of the exact method is
evaluated based on the Upper Bound (UB) deviation from the Lower
Bound (LB) achieved by B&C algorithm of CPLEX solver. Figure 3
shows that the exact method has the lowest average GAP among
all methods.
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Figure 3: Average results obtained through GAP.

B&C from CPLEX solver does not return optimal solutions for
large instances, �nding only 26 feasible solutions within the time
limit. This situation occurs with all instances in subsets LFM3000,
LFM5000 and LHT12. On the other hand, the meta–heuristics return
feasible solutions for all large instances. Figure 4 compares the gap
values, but only for the subset of instances solved by all methods.
The exact method has the lowest average gap only for LFM4000
and LHT08 in Figure 4. The genetic algorithms present better gap
values on average. The t-GA is better for LFM2000, LHT04 and
LHT06, while g-GA behaves better in LFM1000 and LHT10. The
Kruskal–Wallis test was applied since the data set evaluated does
not follow a normal distribution by Anderson–Darling test. The
results show no signi�cant di�erence for all set of small instances
as well as for all subset of large instances solved by all methods.
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Figure 4: Average results obtained through GAP.

5 CONCLUSION
The exact method solves small instances reaching many optimal
solutions. However, it is not able to �nd optimal or even feasible
solutions for many large instances, while t–GA and g–GA returned
feasible solutions for all large instances. For the same subset of large
instances solved by all methods, there is no signi�cant statistical
di�erence between t–GA and g–GA.
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