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ABSTRACT
Various geometric search operators have been developed to explore
the behaviours of individuals in genetic programming (GP) for the
sake of making the evolutionary process more e�ective. �is work
proposes two geometric search operators to ful�l the semantic re-
quirements under the theoretical framework of geometric semantic
GP for symbolic regression. �e two operators approximate the
target semantics gradually but e�ectively. �e results show that
the new geometric operators can not only lead to a notable bene�t
to the learning performance, but also improve the generalisation
ability of GP. In addition, they also bring a signi�cant improvement
to Random Desired Operator, which is a state-of-the-art geometric
semantic operator.
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1 INTRODUCTION
Di�erent from traditional Genetic Programming (GP) [1], Semantic
Genetic Programming (SGP) [3], which is a recently developed
variant of GP, makes use of semantic-aware search operators to
produce o�springs that are highly correlated with their parents
in behaviour. In GP for symbolic regression, the semantics of a
program is de�ned as a vector, the elements of which are the cor-
responding outputs of the program given the input samples [3].
One particular category of SGP, Geometric Semantic GP (GSGP) [2],
which searches directly in the semantic space, opens a new direction
to utilise the semantics of GP individuals. However, over-grown
o�springs in GSGP, which are caused by the linear combination of
parent(s), are expensive to execute in both memory and time. �ere
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is a need for the development of an algorithm to ful�l the GSGP
theory rather than the linear combination. Recent research has
proposed many variants of GSGP to overcome the limitation [4, 6].
However, many of these geometric operators, such as Random De-
sired Operator (RDO) [4], can eliminate over-grown individuals
but never consider the GSGP theory, which is the principle for the
success of GSGP. �is work aims to ful�l this gap to some extent.
�e overall goal of this work is to develop two new geometric se-
mantic operators including crossover and mutation to ful�l speci�c
semantic requirements under the theoretical framework of GSGP.
A comparison between the proposed geometric operators and RDO
will be conducted to investigate the e�ect of the new operators.

2 GEOMETRIC SEMANTIC GENETIC
PROGRAMMING

�e theoretical framework of GSGP is de�ned as follows [2] :

De�nition 2.1. Geometric Semantic Crossover: Given two par-
ent individuals with semantics S (P1 ) and S (P2 ), a geometric se-
mantic crossover generates o�spring O j (j ∈ 1, 2) having semantics
S (O j ) in the segment between the semantics of their parents, i.e.,
‖S (P1 ), S (P2 ) ‖ = ‖S (P1 ), S (O j ) ‖ + ‖S (O j ), S (P2 ) ‖.

De�nition 2.2. Geometric Semantic Mutation: Given a parent
P with semantics S (P ), r -geometric semantic mutation produces
o�spring O in a ball of radius r centered in P , i.e., ‖S (P ), S (O ) ‖ ≤ r .

3 THE PROPOSED OPERATORS
�is work aims to propose two new geometric operators, which are
called perpendicular crossover and random segment mutation, to ful�l
new semantics requirements under the theoretical framework of
GSGP, which are more speci�c than the originally desired semantics
for the o�spring in both GSGP and RDO. In GSGP, the semantics of
the new generation rely on the parent(s), while RDO only considers
the semantics of the target. �e new geometric operators utilise
the semantics of both the target and the parent(s). For presentation
convenience, GP with the two new geometric operators is named
NGSGP.

3.1 Perpendicular Crossover
Given two parent individuals, perpendicular crossover is a semantic
search operator that generates o�springs having two geometric
properties. �e �rst property is that the o�springs need to stand in
the vector de�ned by their parents. �e second is that the o�spring
should make the vector, which is de�ned by the target semantics
and the o�spring point, perpendicular to the given vector of their
parents. Suppose the target semantic is ~T , and the semantics of the
two parents are ~P1 and ~P2. α refers to the angle between the relative
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Table 1: Benchmark Problems

Name # Features #Total Instances #Training Instances #Test Instances
LD50 626 234 163 71
DLBCL 7399 240 160 80

semantics of ~P2 and ~T to ~P1, while β is its counterpart to ~P2. �e
angle α and β are de�ned as follows:

α = arccos *
,

(~P1 − ~T ) · (~P1 − ~P2 )

‖~P1 − ~T ‖ · ‖~P1 − ~P2 ‖
+
-

β = arccos *
,

(~P2 − ~T ) · (~P1 − ~P2 )

‖~P2 − ~T ‖ · ‖~P1 − ~P2 ‖
+
-

(1)

where (~P1−~T ) ·(~P1−~P2 ) =
∑n
i=1 (p1i−ti ) ·(p1i−p2i ), ‖~P−~T ‖ =

√∑n
i=1 (pi − ti )2

and ‖~P1 − ~P2 ‖ =
√∑n

i=1 (p1i − p2i )2. p1i , p2i and ti are the values of ~P1 , ~P2
and ~T in the ith dimension, respectively.

�e parametric equation is used to express a line in the semantic
space. Speci�cally, suppose L is the line given by the two parents
~P1 and ~P2 in an n dimensional space, the semantics of the o�spring
program O in the line L is given in Equation (2).

~O = ~P1 + k ·VL (2)
where VL = ~P1 − ~P2 is a vector, the elements of which are de�ned as
{p11−p21, p12−p22, . . . , p1n −p2n }. k = ‖~P1− ~O ‖/ ‖~P1−~P2 ‖ is a real number
parameter. When 0 < k < 1 (α < 90 and β < 90), ~O is a point on the
segment between P and Q . Further, if k < 0 (α > 90), ~O is outside
the segment on the ~P1 side, while if k > 1(β > 90), ~O is outside on
the ~P2 side.

3.2 Random Segment Mutation
Random segment mutation (RSM) is a kind of geometric mutation,
on which the desired semantics of the o�spring is standing in the
segment of the parent and the target point in the semantic space.
Firstly, RSM needs to �nd the segment between the target semantic
~T and the semantics of the parent ~P . �en a random point is obtained
along this segment, which is treated as the desired semantics of
the o�spring ~O . RSM makes a small but very important change to
RDO, i.e. RDO treats the target semantics as the desired semantics
for all the o�spring, while RSM utilises the target semantics in an
implicit way.

When implementing the perpendicular crossover and RSM in
NGSGP, the semantic backpropagation [4] and semantic library
search are applied to the parent(s) to obtain the desired semantics.

4 THE EXPERIMENT
To investigate the e�ectiveness of the two new geometric search
operators, a set of experiments have been conducted to compare
NGSGP with RDO. In addition, the performance of GP using only
the perpendicular crossover (PC) and GPwith only random segment
mutation (RSM) are also examined. Standard GP is used as a baseline
for comparison. �e methods are tested on two real-world datasets
[5, 6], as shown in Table 1. Each GP method has been conducted for
100 independent runs on each problem. For comparison, the root
mean square error (RMSE) of the best-of-run model on the training
set and its corresponding test error are recorded.

�e mean and standard deviation of RMSEs achieved by the 100
best-of-run programs on the training set and the test sets are shown
in Table 2. �eminimum values among the �vemethods are marked
in bold. �e four geometric semantic GP methods generally have
much smaller RMSEs than standard GP on the training datasets.

Table 2: Training and Test Errors of the 100 Best Programs

GP RDO RSM PC NGSGP
Mean±Std Mean±Std Mean±Std Mean±Std Mean±Std

Training
LD50 1950.94±67.66 1692.2±317.1 1888.59±108.26 1952.63±51.68 1844.52±88.5
DLBCL 0.65±0.02 0.63±0.07 0.65±0.04 0.62±0.03 0.57±0.08

Test
LD50 2007.5±67.1 4354.9±9236.7 1996.8±79.4 2020.7±83.3 1987.88±87.5
DLBCL 0.7±0.04 0.71±0.04 0.7±0.04 0.69±0.05 0.62±0.07

Compared with RDO, NGSGP has a higher training error on LD50
but a smaller training error on DLBCL. On LD50 and DLBCL, RDO
generalises worse than standard GP. On LD50, RDO achieves the
best training performance but the worst generalisation (test) per-
formance among the methods, which indicates its over��ing to the
training set. However, on the two test sets, NGSGP can generalise
be�er than standard GP and signi�cantly be�er than RDO.

NGSGP is guided by many intermediate semantic targets (dif-
ferent desired semantics for each o�spring) under the theoretical
requirement of GSGP, which can help maintain the semantic di-
versity of the population be�er than utilising only one target (i.e.
the target semantics) in RDO. Higher semantic diversity will lead
to a be�er exploration ability of GP and has a positive e�ect on
enhancing the e�ectiveness of the evolutionary search. On the
other hand, when tackling the real-world data containing noise,
the property of less greedy to the target semantics in NGSGP will
lead to the reduction of over��ing, thus generalise be�er.

5 CONCLUSIONS
�is work develops two new geometric semantic operators to ful�l
be�er desired semantics, which are under the theoretical require-
ment of GSGP, for the o�spring programs in GP. �e e�ect of the
proposed operators has been con�rmed by the notable improve-
ment on learning and generalisation performance over standard
GP and GP using RDO.

For future work, we are interested in speeding up the new oper-
ators by improving the algorithm on semantic library search and
introducing bloat free mechanism to the new operators. Moreover,
instead of approximating the semantic requirement by semantic
backpropagation and library search, we also plan to ful�l the se-
mantic requirement in a more accurate way.
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