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ABSTRACT
Fitness landscape analysis plays an important role in both theoreti-
cal and practical perspectives when using evolutionary algorithms.
In this paper, we develop a new measure based on the mutual infor-
mation paradigm and we show how it can help to deduce further
information about the �tness landscape. In order to validate it as a
valuable source of information when conducting �tness landscape
analysis, we investigate its properties on a well-known benchmark
suite. Moreover, we investigate the usefulness of the obtained in-
formation when choosing crossover operators. Finally, we show
that when using our new measure, a number of classi�ers can be
constructed that o�er an improved accuracy.
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1 INTRODUCTION AND BACKGROUND
When dealing with di�cult optimization problems, evolutionary
algorithms (EAs) have shown their strength a plethora of times.
Still, obtaining an optimal solution is a goal that is o�en di�cult
to reach which stems from the huge diversity of possible (di�cult)
optimization problems one can encounter. Furthermore, the “No
Free Lunch” theorem states that, informally speaking, when av-
eraged over all optimization problems, all algorithms behave the
same [4]. Since we know that we cannot �nd a single best algorithm
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for all problems, we should rather turn our a�ention to �nding the
best algorithms for certain classes of problems. In this process, the
concept of the �tness landscape can play a signi�cant role. Indeed,
by checking the properties of the landscape corresponding to the
problem at hand, we can gain new knowledge that can be then used
to understand and design be�er suited metaheuristics. However,
even by using all existing measures, important characteristics of
�tness landscapes are o�en le� unnoticed. �erefore, designing
new measures that have a sound theoretical basis, but are also clear
on a more intuitive level is an important goal.

�e main contribution of this paper is the design of a new �t-
ness landscape measure based on the mutual information paradigm.
With this measure, we are able to be�er distinguish from among
some problem classes on the basis of their �tness landscapes. Ad-
ditionally, we conduct an extensive analysis of the current �tness
landscape measures for a multitude of standard benchmarks with a
varying number of dimensions. Moreover, we analyze the amount
of information obtained from �tness landscapes with respect to the
size of the initial population. More precisely, in this paper we:

(1) design new �tness landscape measures based on mutual
information,

(2) empirically assess the validity of our measure on a number
of problems, problems’ dimensions, and sampled �tness
landscape sizes,

(3) show that our measures are relatively independent of the
size of the sampled �tness landscape, which makes them
easier to use in practice, and

(4) show that our measures can help in choosing crossover
operators in genetic algorithms for solving di�erent prob-
lems.

Regarding the test problems, we use those available from the
COCO (COmparing Continuous Optimisers) platform [1], where
we investigate the performance of 24 noise-free real-parameter
single-objective problems in 30 and 100 variables.

2 MUTUAL INFORMATION LANDSCAPE
ANALYSIS

Mutual information is a concept which comes from the probability
theory and information theory. It is the measure of the mutual
dependence between two variables. More precisely, we can use
mutual information to quantify the amount of information (i.e., the
entropy of a random variable) obtained from one random variable,
by observing the other random variable. Mutual information can
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Table 1: Classi�cation results (population size: 1 000, dimension: 30).

Naive Bayes C4.5 Random Forest SVM (polykernel)
with NMI without NMI with NMI without NMI with NMI without NMI with NMI without NMI

arithmetic 50.000% 37.500% 54.167% 54.167% 62.500% 45.833% 54.167% 50.000%

average 45.833% 50.000% 54.167% 54.167% 37.500% 62.500% 41.667% 45.833%

BGA 83.333% 45.833% 62.500% 50.000% 83.333% 75.000% 54.167% 54.167%

BLX α 37.500% 33.333% 45.833% 45.833% 45.833% 58.333% 50.000% 54.167%

discrete 25.000% 29.167% 29.167% 25.000% 29.167% 29.167% 37.500% 41.667%

�at 37.500% 33.333% 45.833% 45.833% 45.833% 58.333% 50.000% 54.167%

heuristic 37.500% 33.333% 45.833% 45.833% 45.833% 58.333% 50.000% 54.167%

local 33.333% 45.833% 70.833% 70.833% 41.667% 54.167% 66.667% 66.667%

one point 20.833% 20.833% 29.167% 33.333% 33.333% 33.333% 37.500% 33.333%

SBX 75.000% 62.500% 79.167% 91.667% 70.833% 87.500% 70.833% 75.000%

Table 2: Average Info Gain for �tness landscape measures.

Related measures NMI based measures
d (P ) dmm(P ) δdmm AM GM HM VAR SD MAD

0.026461538 0.068615385 0.039846154 0.067923077 0.100307692 0.100307692 0.033615385 0.033615385 0.033615385

be formally de�ned in the following way:

MI (X ;Y ) =
∑
y∈Y

∑
x ∈X

p(x ,y) log p(x ,y)

p(x)p(y)
, (1)

where p(x ,y) is the joint probability density function of variables
X and Y , and p(x) and p(y) are the marginal probability density
functions of X and Y .

If H (X ) denotes entropy of variable X , and H (X ,Y ) the joint
entropy of variables X and Y , mutual information can be calculated
by using the following expression:

MI (X ;Y ) = H (X ) + H (Y ) − H (X ,Y ).

Due to the marginal entropies, mutual information is not an
invariant measure and, therefore, to increase the strength of the
measure, we can also use the normalized mutual information:

NMI (X ;Y ) = H (X ) + H (Y ) − H (X ,Y )

H (X ,Y )
. (2)

With the mutual information measure, for every function we
calculate the centroid C = (c1, · · · , cD ) of all the vectors in the
�nal population by using the expression c j =

∑n
i=1 xi
n , j = 1, · · · ,D.

�en, for every vector, the mutual information between that vector
and the centroid is calculated. A�er that the arithmetic mean (AM),
geometric mean (GM), and harmonic mean (HM) for the normalized
mutual information (NMI) are obtained.

From the obtained values we observe that the normalised mutual
information does not signi�cantly depend on the choice of the mean
value. Also, conducted experiments show that mutual information
doesn’t depend on the size of the population. We consider these to
be good characteristics, since it enables easier analysis without the
need for further tuning with respect to the population sizes.

Estimating Crossover Operator E�ciency. We investigate to see if
the new measures can help in classifying crossover operators into
good, average or bad in terms of optimizing the selected benchmark
functions as done in [2], where a separate classi�er is developed for

each of the crossover operators. We conducted two sets of experi-
ments. First, a 4-fold cross-validation was used with Naive Bayes,
C4.5, Random Forest, and SVM with polykernel classi�ers without
NMI measure. A�er that, six newmeasures are included: arithmetic
mean (AM), geometric mean (GM), harmonic mean (HM), variance
(VAR), standard deviation (SD), and mean absolute deviation (MAD)
of NMI.�en, 4-fold cross-validation is repeated for each of the four
mentioned classi�ers and crossover operators. �e results are given
in Table 1. Each row gives a percentage of correctly classi�ed ex-
amples for one crossover operator, with and without NMI measure.
Additionally, we used InfoGain Ranker to determine whether the
new measures are useful for classi�cation [3], as shown in Table 2.

3 CONCLUSIONS
In this paper, we show how mutual information and normalized
mutual information can be used as tools in the �tness landscape
analysis. Our results show that both of those measures are con-
sistent with respect to the size of the population and the dimen-
sionality of the problem. On the basis of the presented results, we
believe that mutual information (both standard and normalized)
poses a viable option when investigating �tness landscapes. Still,
our results represent only a starting point where more experiments
are necessary to determine the role of mutual information in the
�tness landscape analysis.
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