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ABSTRACT
In this paper, we introduce a new class of optimisation problems
with tunable landscape features called Interpolated Continuous
Optimisation Problems (ICOPs). ICOPs are de�ned by a search
space, a set of solutions called seeds at selected positions, and their
�tnesses. �e rest of the �tness landscape is interpolated from the
seeds using the inverse distance weighting interpolation function.
We show that by evolving the position and the �tness of the seeds,
we can generate extreme problems with respect to di�erent �tness
landscape measures.
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1 INTRODUCTION
Benchmark suites are commonly used by the EA community to
evaluate the comparative performance of proposed algorithms. In
continuous optimisation, the CEC 2005 [10] and BBOB 2009 [3]
benchmark sets are well-established standards.

�e aim of any benchmark suite should be to provide a compre-
hensive range of challenging problems. From this perspective, the
quality of a benchmark set may be assessed in terms of a range of
problem characteristics including landscape features. In [2], the
authors measure a broad range of features of the CEC 2005 and
BBOB 2009 and show that some are under-represented or not cov-
ered in these sets. It is desirable that coverage by a benchmark set
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of problem features should be controllable a priori as opposed to
only discoverable post hoc.

Generating benchmark problems in a guided way has received a
growing a�ention in the past decade. For instance, in [5], the au-
thors use genetic programming to evolve continuous optimisation
problems. In [11], multimodal optimisation problems are obtained
by combining several randomly distributed peaks.

In [7], the authors propose a new class of problems in binary
space. �e problems are de�ned using a small set of candidate
solutions called seeds with the rest of the �tness landscape obtained
by interpolating the �tness of those seeds using the Hamming
metric. Using a technique based on spanning trees they are able to
set the �tness of the seeds in such a way as to control the di�culty
of the resulting problems for a hill-climber algorithm.

Here, we extend this idea to continuous spaces to introduce
interpolated continuous optimisation problems (ICOPs). ICOPs are
de�ned by a set of solutions called seeds and their assigned �tness
from which the rest of the �tness landscape is interpolated. In this
work we show that, by evolving the position and the �tness of
the seeds, we can vary the values of di�erent landscape di�culty
measures. �is provides us with a method of generating continuous
problems that are tuned to take speci�c values on a variety of
landscape measures.

2 INTERPOLATED CONTINUOUS
OPTIMISATION PROBLEMS

ICOPs are de�ned by the following elements:

(1) A search space Ω: a set, whose elements we refer to as
solutions, that de�nes the optimisation problem domain.
For continuous problems, this will be a (subset of) real
space of chosen dimension. In this paper we choose our
search spaces to be the `-dimensional cubes: Ω = [0, 1]`

(2) A distance function, d (x ,y) : Ω × Ω → R de�ning the
distance between two solutions x and y. �e pair (Ω,d )
with these de�nitions is a metric space. A natural choice of
distance function for continuous search spaces is Euclidean
distance.

(3) A set of seeds S ⊂ Ω: a set of distinct solutions with an
assigned �tness. In general, S will be non-empty and �nite.
�e solutions in S and their assigned �tnesses will de�ne
the entire optimisation problem by interpolation.

(4) An interpolation function fS : Ω → R : in this paper
we use the inverse distance weighting method, originally
de�ned by Shepard [8] for use in spatial analysis. Assuming
the seed set S containsN seeds, labelled s1, ..., sN , and with
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assigned �tnessesu1, ...,uN respectively, we de�ne for any
solution x ∈ Ω:

fS (x ) =




∑N
i=1

ui
d (x,xi )

p∑N
i=1

1
d (x,xi )

p
if d (x ,xi ) , 0 for all i

ui , if d (x ,xi ) = 0 for some i
(1)

where p is a positive real number called the power pa-
rameter. Higher values of p increase the relative in�uence
of nearby seed solutions on the interpolated value. fS (x )
is di�erentiable with respect to x provided d (x ,xi ) is deriv-
able for each xi .

(5) An optimisation objective: we chose minimisation of fS
as the objective, which is consistent with most benchmarks
used in continuous optimisation. By construction, global
minima will occur precisely at those solutions xi in S that
take minimum value ui .

It is important to note that this class of problems is generalisable
over a wide range of representations, in fact any search space that
is a metric space.

3 EVOLVING ICOPS
�e �tness landscape of ICOPs is de�ned by the choice of the seeds
and their �tnesses. In this section, we evolve using a simple di�er-
ential evolution (DE) [9] this set of seeds (�tnesses and positions in
Ω) to create problems that seperatly maximise and minimise the
following landscape measures:

• Fitness Distance Correlation (FDC [4]: �e correlation be-
tween a set of �tness/distance pairs a�er calculating the
distance to the global optimum for each of a random sam-
ple of points resulting in a value between −1 and 1. A low
FDC indicates deceptive problems.

• Information Landscape (IL) [1] : �e distance between the
optimal IL (the sphere function in our case) and the IL of
the problem from a random sample resulting in a value
between 0 and 1. IL measures the searchability of the
problem.

• Dispersion Metric (DM) [6] : measures the global topol-
ogy of the �tness landscape. Negative values indicate the
presence of multiple funnels in the landscape.

We evolved ICOPs over 4 dimensions ` = {2, 3, 5, 10}, using seeds
sets of size N = {10, 50, 100}�e average (over 25 runs) maximised
and minimised measures obtained a�er 10000 function evaluations
can be seen in Table 1.

We can see that the problems generated can nearly span the full
range of each of these measures. We can obtain hard problems i.e.
highly deceptive (FDC close to −1) with a low searchability (IL close
to 1) or multiple funnels (negative DM) as well as easy problems
(the opposite in each measure). It is also interesting to note that for
those three measures, a small number of seeds (N = 10) is enough
to minimise and maximise those measures.

4 CONCLUSION
In this paper, we presented a new class of tunable continuous op-
timisation problems called ICOP. �ese problems are constructed
from a set of seeds with prede�ned �tness while the rest of the

Table 1: Minimisation and maximisation results for FDC, IL
and DM

Dim Seeds Objective FDC IL DM

2

10 max 0.997 0.994 0.366
50 max 0.998 0.993 0.362
100 max 0.995 0.854 0.362
10 min -0.995 0.101 -0.239
50 min -0.998 0.082 -0.235
100 min -0.575 0.132 -0.122

3

10 max 0.996 0.992 0.378
50 max 0.997 0.988 0.371
100 max 0.725 0.876 0.371
10 min -0.994 0.145 -0.241
50 min -0.996 0.135 -0.253
100 min -0.511 0.456 -0.118

5

10 max 0.996 0.993 0.371
50 max 0.993 0.988 0.361
100 max 0.823 0.858 0.361
10 min -0.995 0.136 -0.287
50 min -0.994 0.147 -0.146
100 min -0.68 0.411 -0.085

10

10 max 0.995 0.993 0.349
50 max 0.992 0.985 0.344
100 max 0.784 0.98 0.338
10 min -0.995 0.154 -0.291
50 min -0.988 0.156 -0.158
100 min -0.671 0.443 -0.219

search space is interpolated from those seeds. ICOPs can be evolved
to obtain easy and hard problems with respect to given landscape
measures. Further objective of this research is to create an extensive
set of benchmark problems covering a wider range �tness land-
scape measures to improve evaluation and comparison of existing
and new algorithms.
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