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ABSTRACT
�e late-acceptance hill-climbing (LAHC) metaheuristic is a sto-
chastic hill-climbing algorithm with a simple history mechanism,
proposed by Burke and Bykov in 2008, which seems to give a
remarkable and reliable performance improvement relative to hill-
climbing itself. LAHC is here used for the �rst time for genetic pro-
gramming problems, with a grammatical encoding. A novel variant
of LAHC with an initial random sampling is also proposed. Perfor-
mance of both is competitive with full population-based search.
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1 INTRODUCTION
It has been observed that mutation-only GP can perform surpris-
ingly well [2, 5]. An important motivation for mutation-only algo-
rithms is simplicity: there are few parameters to tune. In this paper,
we focus on a mutation-only algorithm, late-acceptance hill-climbing
(LAHC) [1], which seems to provide a remarkable performance im-
provement relative to basic hill-climbing.

2 SEARCH ALGORITHMS AND ENCODING
�e main feature of LAHC is a history of objective function values,
denoted f , of length L. At each step, a candidate solution is obtained
by mutation from the current solution. If its cost is be�er than or
equal to the current solution, or be�er than or equal to that which
occured L steps previously, the candidate solution is accepted and
becomes the current solution; otherwise it is rejected. Either way,
the appropriate item in f is updated with the current objective
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def LAHC(L, n, C, init, mutate):
s = init() # initial solution
Cs = C(s) # cost of current solution
best = s # best-ever solution
Cbest = Cs # cost of best-ever
f = [Cs] * L # initial history
for I in range(n): # number of iterations

s_ = mutate(s) # candidate solution
Cs_ = C(s_) # cost of candidate
if Cs_ < Cbest:

best = s_ # update best-ever
Cbest = Cs_

v = I % L # v indexes f circularly
if Cs_ <= f[v] or Cs_ <= Cs:

s = s_ # accept candidate
Cs = Cs_ # (otherwise reject)

f[v] = Cs # update circular history
return best, Cbest

Figure 1: Working Python code for LAHC.

function value. To emphasise the simplicity of LAHC, we provide
working Python code (see Figure 1).

LAHC has not previously been used for any GP problem. We
will compare LAHC (with a GE encoding) to a population-based
search, GE itself [4].

GE uses a population, and LAHC does not. A population has
two e�ects on evolution: it provides a large initial sampling, and
it changes the nature of ongoing search, since it allows parallel
search and “information transfer” via crossover. In order to try to
disentangle these two e�ects, we implemented a novel feature in
LAHC: an initial sampling, from which the best individual is chosen
as the �rst “current” individual in the LAHC search. (Of course,
the initial sampling counts towards the LAHC �tness evaluation
budget.) In our runs, LAHC denotes the “vanilla” algorithm, and
LAHC-S denotes the variant with initial sampling.

�e initial populations for GE were created using Sensible Ini-
tialisation [6]. In the case of GE, the initial tree depth was ramped
within the range speci�ed in the experimental setup (see Table 1).
In the case of LAHC/LAHC-S, all individuals were initialised using
the maximum initial tree depth, to prevent the creation of very
small initial individuals. �e reason for this is that in the mutation-
only algorithms, genomes never change in length. �erefore, we
initialise individuals to a large depth hence large genome length,
and allow shorter genomes to occur in e�ect by not using all the
genotypic material during the mapping process.
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3 EXPERIMENTS AND RESULTS
We evaluate our systems on six symbolic regression problems
(Vladislavleva-4, Pagie-1, Keijzer-6, Dow, Tower, and Housing with
dimensions 5, 2, 1, 57, 5, 13) [3]. Parameters are shown in Table 1.

Table 1: Experimental Setup

Parameter GE LAHC LAHC-S
Evaluation budget 25000∗ 25000∗ 25000∗
Population Size 500∗ 1 1
Generations Budget divided by pop. size
Initialisation Sensible Sensible
Initialisation Depths 2–5 5–5 5–5
Initialisation Tails 0.5 × l 10 × l 10 × l
Tournament Size 1%
Crossover prob. 50%
Wrapping O� O� O�
Integer mutation prob. 1.0/l 1.0/l with min. 1 event
Elitism 1%
∗ For V4, Housing and Dow: budget 50000, pop. size 1000.

Sample results are shown in Fig. 2: others are omi�ed for brevity.
For the Housing, Tower, and Dow datasets, all search methods
struggle to compete with a linear regression (LR) baseline. Even
predicting a constant (const) baseline out-performs some setups.
�e same has been observed (on the Tower problem) with a state-
of-the-art symbolic regression method [7].

For most problems, on both training and test performance, the
best setups are LAHC and LAHC-S with intermediate values (L =
50, 100, 500), and standard GE. Overall, standard GE may have the
edge, but it is marginal and somewhat problem-dependent. �ere is
no great di�erence between LAHC and LAHC-S. Although LAHC-S
is a novelty proposed in this paper, this result is positive because it
means that the simplest variant of LAHC remains competitive.

Fig. 3 analyses the e�ect of L using LAHC (results with LAHC-S
are similar). L = 100 dominates, with L = 50 and L = 500 runners-
up. �us when L is too small, search becomes stuck at local optima
(L = 1 reduces to simple hill-climbing); when L is too large, too
many disimproving moves are accepted, and there is not enough
true “climbing” behaviour. �us, L gives a practical control of the
exploration-exploitation balance.

4 CONCLUSIONS
We have for the �rst time combined a late-acceptance hill-climbing
(LAHC) search algorithm with a grammar-based genetic program-
ming encoding. We have tested this combination against a more
typical genetic programming search algorithm, and found that
despite its simplicity (about 20 lines of code, and just one tunable
parameter), LAHC performs surprisingly well. It is a useful addition
to the GP toolbox.

�e addition of an initial sampling (LAHC-S) does not greatly
change long-term LAHC performance, hence di�erences between
LAHC and GE can instead be a�ributed to ongoing information
transfer via crossover.

Several avenues for future research are opened up by this re-
search, especially using LAHC search with other GP encodings.
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Figure 2: Test performance on Vladislavleva-4. LAHC-1 is
o� the chart. Const and LR baselines are shown.
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Figure 3: L: ranked test performance with LAHC.
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