
A Hybrid Genetic Algorithm for Deploying RSUs in VANETs
Based on Inter-Contact Time

Marcelo Fonseca Faraj
Centro Federal de Educação Tecnológica de Minas Gerais

Av. Amazonas, 7675, Nova Gameleira
Belo Horizonte, Brazil

marcelofaraj@gmail.com

João Fernando Machry Sarubbi
Centro Federal de Educação Tecnológica de Minas Gerais

Av. Amazonas, 7675, Nova Gameleira
Belo Horizonte, Brazil
joao@decom.cefetmg.br

Cristiano Maciel da Silva
Universidade Federal de São João Del Rei

Praça Frei Orlando, 170 - Centro
São João Del Rei, Brazil
cristiano@ufsj.edu.br

Flávio Vinícius Cruzeiro Martins
Centro Federal de Educação Tecnológica de Minas Gerais

Av. Amazonas, 7675, Nova Gameleira
Belo Horizonte, Brazil

flaviocruzeiro@decom.cefetmg.br

ABSTRACT
Vehicular ad-hoc networks (VANETs) have potential to ease traffic
management, lower accident rates and provide many more ben-
efits. Deploying the infrastructure entities, called roadside units
(RSUs), is challenging and purpose-dependent. There are many
metrics in literature to evaluate RSU deployment, such as coverage
time-based and inter-contact distance-based. In this work, we use
a metric called Gamma Deployment, based on the inter-contact
time between vehicles and RSUs and on the percentage of vehicles
covered. We implement a heuristic approach based on a hybrid of
genetic algorithm and local search and compare our results with
the algorithm Gamma-G, proposed in literature.

CCS CONCEPTS
• Computing methodologies→Heuristic function construc-
tion; • Mathematics of computing→ Evolutionary algorithms;

KEYWORDS
VANET, Deployment, Genetic algorithm, Memetic Algorithm
ACM Reference format:
Marcelo Fonseca Faraj, João Fernando Machry Sarubbi, Cristiano Maciel
da Silva, and Flávio Vinícius Cruzeiro Martins. 2017. A Hybrid Genetic
Algorithm for Deploying RSUs in VANETs Based on Inter-Contact Time.
In Proceedings of GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017,
2 pages.
https://doi.org/http://dx.doi.org/10.1145/3067695.3076032

1 INTRODUCTION
Labeled as a realistic application ofmobile ad hoc networks, VANETs
allow intelligent transportation systems to provide safer roads,
more efficient flow management, infotainment, and so forth [1]. In a
VANET, communication processes can occur in one or more of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4939-0/17/07.
https://doi.org/http://dx.doi.org/10.1145/3067695.3076032

following ways: vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I) and infrastructure-to-infrastructure (I2I).

In this work, we propose a local search genetic algorithm, called
Gamma-LSGA, for deploying RSUs based on the Gamma Deploy-
ment (ΓD) metric [3]. The genetic operators, fitness function, and
local search methods were built with abundant problem specific
knowledge. We compare our heuristic with the baseline heuristic
Gamma-G [3], which uses the same metric and data preparation.

2 GAMMA DEPLOYMENT
Gamma Deployment (ΓD) is an inter-contact time based metric to
assure quality of service (QoS) for a VANET. Assume a deployment
R of RSUs in a road networkM , and a set V of all vehicles passing
throughM during a specific period of time. Let also C ⊆ V be the
set of vehicles trips meeting the requirement of connecting with at
least one RSU during any τ seconds time interval. A given R inM

is ΓD
(τ
ρ

)
if and only if |C |

|V | ≥ ρ.

3 HYBRID GENETIC ALGORITHM:
GAMMA-LSGA

In this section, we present our algorithm for deploying RSUs based
on the ΓD metric, called Gamma-LSGA. It uses standard concepts
and operators of genetic algorithms, such as a population of P
individuals passing byG generations with selection, crossover, and
mutation. In addition, it includes local search procedures, which
makes it a hybrid genetic algorithm, or a memetic algorithm [2].

3.1 Notation and Fitness Function
We encode an individual R as a ψ × ψ matrix. This represents a
discretization ofM inψ columns andψ rows, adding up toψ 2 urban
cellsUi where RSUs can either be placed or not. If a givenU has an
RSU, it is set to 1; otherwise, it is set to 0. We represent the number
of RSUs of R as |R |. For our purposes, an RSU deployed inU assures
coverage for all vehicles passing by U ’s area. Equation (1) shows
our fitness function f for an R and a given ΓD

(τ
ρ

)
.

f *
,
R, ΓD

(
τ

ρ

)
+
-
=



(1 − ρ) × |V | +
[
|R |
ψ 2

]
, if ΓD

(τ
ρ

)
is not met

|R | −ψ 2 + [−ρ], if ΓD
(τ
ρ

)
is met

(1)

193

https://doi.org/http://dx.doi.org/10.1145/3067695.3076032
https://doi.org/http://dx.doi.org/10.1145/3067695.3076032

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany M. F. Faraj et. al.

3.2 Recombination and Mutation
We use a uniform crossover approach, consisting of a 50% chance
for each gene U to be inherited from each parent. A solution R
has a mutation rate α . If selected to mutate, one of four different
mutation operators is once up to σ times randomly chosen and
applied. Each time, the selected operator can be looped once up to
δ times. Our mutation has 4 random operators: (1) Insertion of new
RSU; (2) Removal of RSU; (3) Move of RSU fromU1 to randomU2;
(4) Move of RSU fromU1 toU2 inU1’s adjacent neighborhood;

3.3 Local Search
We implement 2 local search procedures: Grid Local Search (GLS),
and Reduction Local Search (RLS). They are applied with a fre-
quency of (θ дenerations)−1, and for a fraction π of the fittest so-
lutions [2]. In GLS, a loop is run for each RSU in R until no more
changes are possible: (1) remove it from U1; (2) compute the re-
maining C of R; (3) put it at theU2 inU1’s γ × γ neighboring grid
of cells incurring the greatest increase in |C | or do not put it back
if C is unchanged. In RLS, we sort all RSUs of R based on the |C |
resulting from removing each one. Then, the RSUs are removed
orderly while |C |

|V | ≥ ρ.

4 EXPERIMENTS
We base our experiments in the pruned version of a mobility trace
from Cologne, Germany 1. We use the following parameters: P=40;
G=600;ψ=100; α=3%; σ=10; δ=5; θ=10; π=5%; γ=5; |V | ∈ {500, 1000,
1500, 2000, and 2500}; τ ∈ {40s, 80s, 120s}; and ρ ∈ {0.6, 0.8, 1.0}.
We run the Gamma-LSGA 33 times for each instance, since it is a
stochastic algorithm. The two only solutions in which we apply
GLS and RLS are the best one at the beginning of the generation
and the best among the mutated ones. To verify our parameters for
the local search, we have tested some experiments with θ=1 and
π=100%. The solutions had up to 0.5% fewer RSUs, but the running
time was was up to 100 times higher. We also implement and run
the algorithm Gamma-G [3] for the same instances to compare the
results. It is run only once, since it is a deterministic heuristic.

4.1 Number of RSUs
Figure 1a summarizes the gain of Gamma-LSGA over Gamma-G
for all instances with |V |=1000. This set of experiments exemplifies
the pattern of gains we obtain for the given combinations of τ
and ρ. In total, Gamma-LSGA outperforms Gamma-G in 93% of the
experiments. In figure 1b, we plot the gain of all the 1485 executions
of Gamma-LSGA over Gamma-G as a function of ρ. As the trend
line shows, the gain tends to be higher for lower ρ values.

4.2 Convergence
Figure 2a presents the convergence of Gamma-LSGA for aG=10000,
|V |=1000, ρ=0.6, and τ=80s sample. In Figure 2b, we plot the same
situation, but using a traditional genetic algorithm (TGA), con-
sisting in a Gamma-LSGA without GLS and RLS. In both figures,
the gray curve shows the average number of RSUs of the whole
population, and the black curve presents the number of RSUs of
the best solution. The number of RSUs in the best solution and

1available at http://kolntrace.project.citi-lab.fr/

(a) (b)

Figure 1: Graph (a) shows the gain of Gamma-LSGA over
Gamma-G for |V |=1000. The columns represent the median.
The balls and X’s mark the best and the worst results. Graph
(b) plots the gains of all the experiments and a trend line.

(a) Gamma-LSGA (b) Genetic Algorithm

Figure 2: The graphs (a) and (b) show, respectively, the behav-
ior of Gamma-LSGA and a TGA for τ=80s, ρ=0.6, V=1000.

in the population average are very distant for Gamma-LSGA and
pretty close for TGA. Furthermore, the best solution evolves earlier
and achieves lower marks in Gamma-LSGA. The results show the
highly positive impact of including local search procedures.

5 CONCLUSION
In this work, we propose a hybrid genetic algorithm, called Gamma-
LSGA, for deploying RSUs in VANETs. We guarantee QoS using
Gamma Deployment [3], a metric based on the inter-contact time.
We present some results of our experiments, in which Gamma-
LSGA outperforms Gamma-G for almost all instances, showing
gains up to 15%. We also find that the presence of local search
procedures in Gamma-LSGA impacts the algorithm execution by
providing a faster convergence and better results.

REFERENCES
[1] Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien Zedan. 2014. A

comprehensive survey on vehicular Ad Hoc network. Journal of network and
computer applications 37 (2014), 380–392.

[2] Tarek A El-Mihoub, Adrian A Hopgood, Lars Nolle, and Alan Battersby. 2006.
Hybrid Genetic Algorithms: A Review. Engineering Letters 13, 2 (2006), 124–137.

[3] Cristiano M Silva, Daniel L Guidoni, Fernanda S Souza, Cristiano G Pitangui,
João FM Sarubbi, Andre LL Aquino, Wagner Meira, Jose Marcos S Nogueira,
and Andreas Pitsillides. 2016. Using the inter-contact time for planning the
communication infrastructure in vehicular networks. In Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE, 2089–2094.

194

	Abstract
	1 Introduction
	2 Gamma Deployment
	3 Hybrid Genetic Algorithm: Gamma-LSGA
	3.1 Notation and Fitness Function
	3.2 Recombination and Mutation
	3.3 Local Search

	4 Experiments
	4.1 Number of RSUs
	4.2 Convergence

	5 Conclusion
	References

