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ABSTRACT 
In this paper we show the potentiality of Embodied Evolution in 
the optimization of general multi-robot systems, as compared to 
state-of-the-art approaches based on Cooperative Coevolution. 
The comparison is carried out in a real application problem of 
coordinating a team of autonomous UAVs for surveillance which, 
in parallel, must optimize their location accuracy. The results 
show the advantages of using Embodied Evolution algorithms to 
notably reduce the number of evolution steps while maintaining 
the performance level. 

CCS CONCEPTS 
• Computing methodologies → Evolutionary robotics; 
• Computing methodologies → Cooperation and coordination 
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1 INTRODUCTION 
We aim to study here the potentiality of Embodied Evolution (EE) 
[1] to solve general multi-robot problems performing an off-line, 
on-board evolution with heterogeneous individuals. Two 
approaches to EE have been considered: a distributed one, where 
each robot carries only one genotype, and an encapsulated one, 
where each robot carries a whole population. We have decided to 
compare them with the most similar approach that has provided 
successful results in multi-robot optimization, namely, 

Cooperative Coevolution Evolutionary Algorithms (CCEA) [2]. 
The CCEA background consists in decomposing the original high-
dimensional problem into a set of lower-dimensional 
subcomponents, which are easier to solve. Typically, each 
subcomponent is evolved is a separated population. During the 
process, the only cooperation takes place in fitness evaluation, 
through an exchange of information between subcomponents. 
This type of algorithm supports heterogeneous controllers 
natively (each controller runs in an independent population) 
although it performs an off-line and off-board evolution.  

 

2 ALGORITHMS 
The three main algorithms that have been used in the comparison 
are the Differential Evolution Cooperative Coevolution (DECC) 
[2] with three variations, an encapsulated Embodied Evolution 
approach with two variations [3], and finally, a distributed 
Embodied Evolution approach [4]. Their pseudocodes are shown 
in Algorithm 1, Algorithm 2 and Algorithm 3 correspondingly. For 
the DECC, the three variations that have been used are the 
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following: one uses fixed groups and global fitness (DECC-FG), 
the second uses fixed groups but private fitness (DECC-FG-
private), and the last one uses random groups (DECC-RG). For the 
encapsulated EE algorithm, two variations have been considered, 
a synchronous one (the evaluations are fixed to a period of time 
and it runs off-line) and an asynchronous one (the controllers are 
evaluated until they run out of energy, and it runs on-line).  

 

 

 

3 EXPERIMENTAL SETUP 
To compare the algorithms, we have designed a multi-robot 
experiment based on a collective surveillance task that must be 
carried out through a group of UAVs with realistic degradation on 
the accuracy of the self-location. The experiment details can be 
seen in [4]. Fig. 1 contains the average exploration level obtained 
for the six algorithms throughout iterations. Each algorithm was 
executed 20 times, each of them implying about 4 hours in an i7 
4770s processor, and the resulting exploration level was averaged 
between them. The most significant result that can be extracted 
from this figure is the time required to reach stable solutions, 
which is much lower in the on-line algorithms (asynchronous 
encapsulated and canonical dEE), as expected. They improve their 
exploration level quickly, and in around 5 million iterations, 
which constitutes the 12,5% of the total iterations, they reach a 

stable range that continues until the final iteration. In contrast, 
the off-line algorithms (encapsulated and DECC variants) require 
almost half of the total iterations to reach a stable solution. The 
encapsulated algorithm provides the best results in the off-line 
approaches, while the DECC-FG obtains the best performance of 
the DECC variants.  

We have noticed during the realization of the tests that there is a 
clear relation between the performance and the specialization of 
the population in multi-robot optimization problems. Thus, the 
on-line algorithms, and specially the dEE, exploit their simplicity 
in this domain in order to specialize individuals in simple tasks so 
evolution is much faster than in off-line approaches, where the 
several evolution processes that are executed in parallel makes the 
optimization slower and more complex. 

 
Figure 1: Performance comparison of the algorithms 

5 CONCLUSIONS 
The main conclusion of this work is that Embodied Evolution is a 
highly promising evolutionary approach for on-line multi-robot 
optimization. It is able to obtain specialized individuals that can 
solve complex tasks without resorting to high time-consuming 
evaluations.  
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