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DETAILED ALGORITHM DESCRIPTION 
WE describe the three main algorithms that have been used in the 
comparison, and several variations of them. First of all, a state-of-
the-art CCEA approach, the Differential Evolution Cooperative 
Coevolution (DECC). Second, an encapsulated Embodied 
Evolution approach with two variations, and finally, a distributed 
Embodied Evolution approach. This way we can compare the two 
extreme options of EE, encapsulated and distributed, with a CCEA 
algorithm. 

DECC 
We have resorted to general CCEA bibliography to find the state-
of-the-art approach in high-dimensional optimization. The 
selected algorithm has been the Differential Evolution 
Cooperative Coevolution (DECC), which is an adaptation of the 
DECC-G algorithm from Yang et al. [1]. The motivation of the 
DECC-G algorithm is to apply cooperative coevolution to 
decompose high dimensional and non-separable problems. In high 
dimensional problems, it is beneficial to apply cooperative 
coevolution for decomposing the problem in smaller problems but 
previous cooperative coevolution techniques failed when the 
problem is non-separable, because they do not account for the 
relations between the variables. The DECC-G algorithm change 
the decomposition strategy to solve non-separable problems. The 
proposed decomposition strategy is to make groups of 
interdependent variables that improve the optimization and uses 
an advanced evolutionary algorithm like Differential Evolution 
(DE) to optimize each component. Another innovation is that 
previous cooperative coevolutionary algorithms did not use a 
state of the art evolutionary technique like DE but instead simpler 
genetic algorithms. One algorithm that extends the DECC-G 
algorithm is the MLCC (Multilevel Cooperative Coevolutionary) 
algorithm, that adjust automatically the group size [2]. 

The DECC algorithm combines concepts from both approaches 
(grouping strategy and DE recombination operator) to apply it to 
the coordination of a team of robots. The algorithms proceed as 
follows: 

• First of all, there is a vector of all the variables of the problem 
that will be divided in groups, with each group evolving in 
isolated instances of a differential evolution algorithm. The 
number of components depends on the grouping size. In each 
cycle, the first step of the algorithm is to permute the vector 
of variables. This step can be omitted and the groups will be 
assigned initially and remain fixed in the case of the variation 
named DECC-FG (DECC with fixed groups). Or it can be 
randomly assigned for each evolutionary generation as it is 
the case of the version shown in Algorithm 1 (DECC-RG).  

• After the permutation, new populations of DE are created 
with the corresponding groups of variables and they are 
evolved for a number of evaluations. One cycle of the 
algorithm consists of evolving each of these components 
sequentially. Given that each component has an internal 
population, there are a lot of combinations but here the 
process is sequential, with an off-line evolution, evolving one 
group of variables each time.  

• For each evaluation, the current variables are transferred to 
the robots and they try to perform the task for a number of 
iterations. After the evaluation, the environment is reset. The 
evaluation of a group of variables provides the global fitness 
of the team in the task.  

• If the groups of variables are fixed and assigned exactly to 
the control parameters of one robot, the evaluation of the 
group and the robot private fitness in the task would 
coincide. This version of the algorithm using private fitness 
is referred here as DECC-FG-Private.  

• After one component has evolved for the specified time, the 
best variables for this group are modified in the variable 
vector, and the next component will evolve with these new 
solutions.  

• Finally, when all components had evolved, new groups are 
created and evolution of all components starts again until a 
number of cycles are completed. 



 
 

 

 

Encapsulated Embodied Evolution 
As for the encapsulated version of EE algorithms, several 
implementations can be found [3][4], which basically follow the 
same operating principles with minor changes in the evaluation 
of individuals. To take part in this comparison, we have followed 
the operation scheme of those algorithms and implemented them 
with some structural changes in the evaluation in order to make 
the results comparable with those of DECC approaches. In other 
encapsulated algorithms, the time for evaluation is shared 
between the individuals of each population but in our 
encapsulated algorithm a high fitness controller will have more 
evaluations than a bad controller.  

The encapsulated EE algorithm follows the pseudocode shown in 
Algorithm 2. Each robot has an internal DE population that evolve 
independent from each other. Because of this, multiple 
combinations of individuals are possible for forming teams. In our 
implementation, before starting any evaluation, a tournament is 
made in each robot to select the controller. After that, some of the 
populations are chosen to create new individuals. The team with 
these new individuals is evaluated for a fixed period of time. If the 
global evaluation with the new individuals is higher than previous 
global evaluations of their ancestor, the ancestor is replaced. Also, 
the individuals that formed the team use the new global fitness to 
update their fitness as an average of all the evaluations that 
include them. There is no migration between DE populations, so 
in this case the populations work as isolated islands. This 
operation sequence implies that this algorithm is synchronous 
and off-line, since the evaluations are fixed to a period of time. 

Two main differences set encapsulated EE and DECC algorithms 
apart: on the one hand in this algorithm each robot corresponds 
always to the same DE population, with as many DE populations 
as robots and a group size that matches the number of parameters 

of the controller of one robot, unlike DECC-FG where the group 
is fixed but the group size could correspond to several robots. On 
the other hand, in DECC, only one group creates new individuals 
at a time, but in this algorithm, more than one population can 
create new individuals at each cycle since several populations are 
selected randomly for creating new individual at each cycle. This 
means that this algorithm should converge faster (higher 
exploitations, lower exploration) than the previous one because a 
larger portion of the variables are modified in each evaluation. 
Also, a high number of active populations is not beneficial for the 
stability of the evaluations, because with the tournament it can be 
considered that the robots whose populations are not active will 
perform well with one fit controller.  

There is no migration between DE populations, so in this case the 
population work as isolated islands. This operational sequence 
implies that this algorithm is synchronous and off-line, since the 
evaluations are fixed to a period of time.  

 

We also found interesting to implement an asynchronous version 
of the algorithm and include it in the comparison. In the 
asynchronous encapsulated algorithm, the evolution is on-line 
and the controllers are evaluated until they run out of energy 
instead of being evaluated for a fixed number of iterations. The 
new individuals are generated when the controller runs out of 
energy and the change of the controller only affect that robot, 
without resetting the environment or changing any other 
controller. Because the populations inside the robot are large and 
all individuals need to be evaluated, instead of creating a new 
individual every time the controller runs out of energy, according 
to a probability, a tournament is made to select the next controller 
for the corresponding robot. 

Distributed Embodied Evolution 
Among the existing EE algorithms found in the literature, three 
distributed implementations can be noted: mEDEA [5], PGTA [6], 
and ASiCo [7]. They have been applied with success to different 
multi-robot tasks requiring coordination and adaptation in real 
time. In a previous work [8], authors have developed and analyzed 
a canonical version of a distributed EE algorithm that generalizes 



 

the operational principles of the three algorithms highlighted 
above. In order to capsulize this category, this canonical version 
will be used to represent it. 
The canonical distributed embodied evolution (dEE) algorithm 
parametrizes the basic processes of the embodied evolution 
paradigm. It is not the scope of this work to analyze this 
parametrization but compare this paradigm versus other 
cooperative coevolutionary algorithms like the previously 
described. The pseudocode for the dEE algorithm is shown in 
Algorithm 3. 
 

 

EXPERIMENTAL SETUP 
To compare the algorithms, we have designed a multi-robot 
experiment with all the features established in the introduction 
for a collective task inspired in a real-world problem. The 
experiment requires to optimize a high-dimensional search space 
which is dynamic, decentralized and with a strong 
interdependence between controllers, promoting the emergence 
of specialized individuals. Moreover, it generalizes other typical 
tasks solved in evolutionary robotics, like searching points of 
interest, area coverage and so on. Thus, it constitutes a 
prototypical application case in this domain, which can be very 
useful to analyze the practical response of these algorithms. 

Multi-robot surveillance with location accuracy 
degradation 

In this experiment, we deal with a fleet of Unnamed Aerial 
Vehicles (UAVs) that has to collectively survey an indoor scenario. 
To do it properly, the UAVs need to locate themselves accurately 
to share information with other robots coherently. It is well-
known that the accuracy in the localization is a key aspect in 
navigation tasks with autonomous robots, so we propose to 
include it as a part of the problem that must be optimized.  
The determination of the UAV positions will be performed using 
their IMU, the position of other UAVs in sight, and artificial 
landmarks that can be sensed using the onboard camera. The 

control of each of the UAVs will be obtained by evolution using 
the different algorithms presented above, that are in charge of 
coordinating the UAVs in the scenario in order to increase the 
accuracy of the fleet location, and consequently, the speed at 
which a new point of interest is reached. 

 
Figure 1. Parrot ARDrone 2.0 and the visual fiducial 
markers 
 The experimental setup has been defined in simulation, but based 
on a real indoor gathering task performed by real UAVs. The 
specific UAV that has been modeled is the Parrot ARDrone 2.0 
(displayed in Figure 1). The most important aspect of the 
simulation is the model of the response of the location sensors 
when a certain maneuver is carried out. Regarding the artificial 
landmarks, we have used visual fiducial markers, with a model 
that represents the AprilTags created by The APRIL Robotics 
Laboratory at the University of Michigan. Therefore, the location 
estimation provided by the markers is based on a real accuracy 
model which was produced in our laboratory using an ARDrone 
2.0 and 40 cm long AprilTags, and that can be formulated as a 
function φ which relates the variance of the estimation 
𝑉𝑎𝑟(𝑝&'()*)  with the relative distance ( 𝑝&'()* − 𝑝-./ ) and 
orientation (𝑦𝑎𝑤&'()*:-./) between camera and tag: 
 

𝑉𝑎𝑟(𝑝&'()*) = 𝝋( 𝑝&'()* − 𝑝-./ , 𝑦𝑎𝑤&'()*:-./) 
 
These tags (permanent tags) provide an absolute and potentially 
accurate position estimation, which does not degrade with time. 
In order to improve the performance of the navigation by 
improving the accuracy of the UAVs, the same type of tags is also 
attached to the body of the quadcopters (mobile tags), which will 
make up a hybrid location sensor. Therefore, the detection 
provided by a mobile tag still constitutes a direct location 
estimation but, unlike in the case of permanent tags, their 
accuracy degrades as the accuracy of the carrier of the tag 
decreases. The accuracy degradation is, however, proportional to 
the velocity of the UAV. Therefore, the mobile tags should tend to 
stay still to be more efficient as accuracy exchangers. The use of 
this type of mobile tags leads to accuracy becoming a resource 
that UAVs can get and share to be able to slow down its 
degradation, and therefore, to accomplish their main task more 
efficiently. It could also allow some of the UAVs not to require 
visits to static tags, which are frequently non optimally located, in 



 
 

 

order to improve their location accuracy, being ‘nourished’ by 
mobile tags. 
The scenario was discretized to reduce computational effort as a 
768 x 768 (square length units) non-toroidal square arena, which 
is provided with 4 fixed tags placed randomly. Figure 2 shows a 
schematic representation of a portion of the arena. Each UAV is 
associated to both a real and an estimated position. The former is 
shown with a solid color in the simulation and the later with a 
softened shadow of the UAV. The UAV has no idea of the real 
position, this is just an externally obtained value for display 
purposes. The further the distance between those positions, the 
higher the location estimation error and the lower the exploration 
level. Table 1 contains the specific parameters that define the 
scenario. 

 
Figure 2. Graphical representation of a portion of the 
scenario. The distance to each own shadow represents the 
current estimation error for the UAV. The red UAV 
represents a mobile tag. The circles around the tags are the 
different levels of accuracy provided by the tag. 
 
Table 1. Design parameters of the simulated scenario 
 

Parameter Value 
Side of the arena (L) 768 
Total area L2 
Fixed tags detection range L/4 
Mobile tags detection range L/16 
Max velocity (Vmax) L/50 

 
The final objective of the surveillance task is for the fleet of UAVs 
to continuously cover the maximum possible area. In order to 
perform the search of unexplored areas, the UAVs can keep record 
of the areas they have already explored. This is stored in an 
‘exploration map’ carried by each UAV and that can also be shared 
with others when they meet. The exchange of this information 
allows the task to be solved cooperatively since it enables the 
distribution of the search among the group of UAVs. However, 
since the estimation of one’s position has a varying accuracy, the 
updating of the exploration map has to take that into account. The 
exploration of a cell is modeled as an exploration probability (Pex), 
which indicates the probability that a certain cell has of having 
been explored. Subsequent UAVs must decide whether or not to 

re-explore that cell based on the guaranteed exploration 
probability Pex. Therefore, the collaborative exploration map is the 
only information that a UAV gets from the scenario about the 
surveillance process.  

Algorithm configuration 
The UAVs are defined by their real spatial location [xr,yr] (they 
are supposed to fly at a constant height [zr]) and their estimated 
location [xe,ye] (their orientation, given by the yaw angle, is 
defined by the direction of movement so it is not required 
explicitly). They also display an estimated accuracy (ae), which is 
described by the standard deviation of their estimated spatial 
coordinates.  
Three types of sensors are considered, namely, the explorability 
sensor (E), the available accuracy (Aa) and the current exploration 
level of the UAV (Dex). The first two sensors are associated to a 
certain portion of the arena (a group of neighboring cells), where 
the potential increase of exploration that the UAV can provide if 
it visits it is calculated (E) together with an estimation of the 
available accuracy (Aa) as a combination of the distance and 
accuracy of the closest tag. Several groups of neighboring cells of 
different sizes are considered (1, 3x3, 6x6 and 12x12, up to 36 
groups of cells in total) and their sensed parameters are calculated. 
Those values together with the current exploration level of the 
UAV (the exploration probability it will set if it visits a cell) will 
constitute the inputs to the control unit. As actuators, the UAVs 
can execute one of five predefined behaviors: near exploration, 
distant exploration, accuracy sharing, increase accuracy or tag 
avoidance. Thus, only their motion is controlled by the control 
unit, since the rest of actions are performed automatically based 
on the relative position between the UAVs and between UAVs and 
tags.The control unit is in charge of defining the actuation of the 
UAVs, which is, in a nutshell, their motion. It defines its operation 
based on a set of parameters (8) that will be used as weighting, 
threshold and duration coefficients to define the criteria to select 
the target area of the arena from a set of neighboring candidates.  
The global fitness (F) is defined by the task as the average of the 
exploration level (𝑒7) of each area of the arena. The higher the 
global fitness the faster and more exhaustive the exploration the 
fleet is performing. Being M the number of areas in which the 
arena is divided: 

𝐹	 = 	
𝑒7:	.'*.;

7<=
𝑀

 

The private fitness (fj) defined in this scenario for each of the 
individuals is calculated using the sum of the increment in 

exploration it provides to each cell it visits D𝑒7
? . However, we 

can find individuals (or actions of individuals) that collaborate to 
the success of the global aim but which do not explore the 
scenario. Those are the individuals that provide location accuracy 

(𝑠7
? , shared accuracy from the ith individual to the jth) to the rest 

of the UAVs. Therefore, the reward assigned for the exploration 
to one individual will be shared with the individuals that provided 
the accuracy used to perform that exploration (if that was the 
case) according to a trade fee (𝑡B). This fee will set the percentage 
of the exploration level achieved that will be returned to the 



 

‘accuracy provider’, and of course subtracted from the explorer, 
as a function of the level of accuracy exchanged. Using this 
fitness-sharing scheme we allow an adjustable credit assignment 
policy: 

𝑓? = (D𝑒7
? − (𝑠D

?𝑡B)
E	F.G;

D<H

)
:	.'*.;

7<H

+ (𝑠?D𝑡B)
E	F.G;

D<H

 

Table 2: Parameterization of algorithms 

Parameter Value 
DECC 

DE populations 40 
Group size 4 
DE: population size 10 
DE: F 0.5 
DE: CR 0.5 
Evaluations in cycle 100 
Evaluation time 1000 
Iterations in cycle 4x106 
Cycles 10 
Total iterations 4x107 

Encapsulated EE 
DE populations 40 
DE: population size 10 
DE: F 0.5 
DE: CR 0.5 
Evaluation time 1000 
Total iterations 4x107 

Canonical dEE 
Maximum lifetime 1000 
Maturity time 1 
Selection criteria F 
Tournament size 40 
Local search 
probability 

0.99 

Mediocrity 
coefficient 

0.01 

Total iterations 4x107 
 
The task is performed by 40 robots controlled with a feedforward 
network encoded in a genotype of 4 real values. In the off-line 
algorithms (DECC and encapsulated) each team is evaluated 
during 1000 steps and the environment is reset for each 
evaluation. Specific parameters for the three types of algorithms 
are shown in Table 2, which have been adjusted to produce the 
best solutions according to the authors’ recommendations. 

RESULTS 
In this section, a comparison regarding the performance of all 
algorithms is presented. This performance is evaluated with 
respect to: the global fitness obtained by each algorithm after a 
limited number of iterations and the time required to obtain a 
predefined satisfactory fitness level. The limit of iterations is set 

to a very high number in order to let all the algorithms enough 
time to converge to their best solutions. To evaluate this fitness, 
it should be noted that these results compare algorithms that 
evolve on-line with algorithms that evolve off-line. Given that the 
DECC algorithm and its variants and the encapsulated algorithm 
evolve off-line, they need to reset the scenario in order to evaluate 
new teams that could perform very differently in the task. For this 
reason, instead of an instantaneous measure of fitness in the task 
that could fluctuate between evaluations, a more representative 
estimation of fitness is given by the best fitness achieved by the 
best team found. The global fitness employed represents the 
exploration level of the environment, that ranges, theoretically, 
from 0 (totally unexplored environment) to 8 (totally explored 
environment). Practically, with the defined scenario dimensions, 
number of robots, and other task parameters, the maximum 
attainable exploration level is around 80-90% of the theoretical 
one (around 6-7).  

 
Figure 3: Performance comparison of the algorithms in the 
exploration task 
 
Fig. 3 contains the average exploration level obtained for the six 
algorithms throughout iterations. Each algorithm was executed 20 
times, each of them implying about 4 hours in an i7 4770s 
processor, and the resulting exploration level was averaged 
between them. The most significant result that can be extracted 
from this figure is the time required to reach stable solutions, 
which is much lower in the on-line algorithms (asynchronous 
encapsulated and canonical dEE), as expected. They improve their 
exploration level quickly, and in around 5 million iterations, 
which constitutes the 12,5% of the total iterations, they reach a 
stable range that continues until the final iteration. In contrast, 
the off-line algorithms (encapsulated and DECC variants) require 
almost half of the total iterations to reach a stable solution. The 
encapsulated algorithm provides the best results in the off-line 
approaches, while the DECC-FG obtains the best performance of 
the DECC variants.  
In order to analyse the exploration level value, it must be pointed 
out that on-line algorithms cannot be directly compared with off-
line ones, because the scenario is not restarted. To solve it, the 
best teams obtained with the on-line algorithms are stored at a 



 
 

 

fixed number of iterations for later re-evaluation, like in the case 
of off-line approaches. The exploration level obtained by the on-
line approaches considering this re-evaluation is displayed with 
the pointed lines in Fig. 3 (the two bottom symbols in the figure 
legend). As it can be seen, now the on-line algorithms reach a 
stable level very similar to the off-line encapsulated version, but 
still better than the DECC variants. 
In order to clarify the performance provided by the different 
algorithms, an analysis of the behaviour of the best populations 
obtained was performed. To do it, we have introduced a new 
metric called behavioural heterogeneity which will estimate the 
diversity of behaviours that each individual activates during its 
lifetime, considering the five possible behaviours described in 
section 3.2. A high heterogeneity value represents an individual 
which continuously switches its behaviour, while a low 
heterogeneity (zero) implies that only one behaviour is activated. 
High values of heterogeneity are associated to low degree of 
specialization in the population and conversely low heterogeneity 
is produced by a high degree of specialization.  

 

Figure 4: Behavior heterogeneity for the dEE algorithm 

In Fig. 4, the behavioural heterogeneity provided by the dEE 
algorithm is shown. It is calculated by executing the final 
configuration of controllers obtained after evolution during 1000 
iterations. There are 40 lines corresponding to the 40 robots, but 
most part of the lines (38 out of 40) are just above the horizontal 
line of heterogeneity 0. As mentioned, heterogeneity 0 represents 
individuals that had the same behaviour for all the iterations. Only 
two robots show heterogeneity equal to 0.5 which corresponds to 
switching between two different behaviours during its lifetime. In 
Fig. 5, the behavioural heterogeneity for the asynchronous 
encapsulated algorithm is displayed. The axes are the same as the 
previous figure and most of the lines are again over heterogeneity 
0. In this case, 36 out of 40. Finally, the results provided by the off-
line encapsulated algorithm can be seen in Fig. 6. Still most of the 
lines tend to be close to zero but the effect is much weaker than 
in the previous cases. For the rest of the off-line algorithms, the 
tendency to heterogeneity zero is almost non-noticeable so they 
are not displayed.  
Therefore, as noticed during the realization of the tests, there is a 
clear relation between the performance and the specialization of 

the population in this type of multi-robot optimization problems. 
Thus, the on-line algorithms, and specially the dEE, exploit their 
simplicity in this domain in order to specialize individuals in 
simple tasks so evolution is much faster than in off-line 
approaches, where the several evolution processes that are 
executed in parallel makes the optimization slower and more 
complex. 

 
Figure 5: Behavior heterogeneity for the asynchronous 
encapsulated algorithm 

 

Figure 6: Behavior heterogeneity for the encapsulated 
algorithm 

DETAILED CONCLUSIONS 
This work has provided some insights into the problem of 
obtaining and evolutionary approach that can optimize wide-
range multi-robot problems. We have shown through a high-
dimensional and realistic experiment that Embodied Evolution 
approaches have a high potential in this domain, mainly due to 
their design principles: on-line, on-board evolution with 
heterogeneous genotypes. These three features allow them to 
obtain specialized individuals that can solve complex tasks 
without resorting to high time-consuming evaluations, which 
results in a much lower number of iterations to reach the optimal 
solution. In the future, we will continue exploring the application 
of Embodied Evolution approaches to general multi-robot 



 

problems and pursuing a better understanding of its operational 
mechanisms to improve its performance 
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