
Embodied Evolution versus Cooperative Coevolution in Multi-
Robot Optimization: a practical comparison

SUPPLEMENTARY MATERIAL: EXPERIMENT DETAILS

P. Trueba
Integrated Group for Engineering

Research
Universidade da Coruña

Spain
pedro.trueba@udc.es

A. Prieto
Integrated Group for Engineering

Research
Universidade da Coruña

Spain
abprieto@udc.es

F. Bellas
Integrated Group for Engineering

Research
Universidade da Coruña

Spain
francisco.bellas@udc.es

DETAILED ALGORITHM DESCRIPTION
WE describe the three main algorithms that have been used in the
comparison, and several variations of them. First of all, a state-of-
the-art CCEA approach, the Differential Evolution Cooperative
Coevolution (DECC). Second, an encapsulated Embodied
Evolution approach with two variations, and finally, a distributed
Embodied Evolution approach. This way we can compare the two
extreme options of EE, encapsulated and distributed, with a CCEA
algorithm.

DECC
We have resorted to general CCEA bibliography to find the state-
of-the-art approach in high-dimensional optimization. The
selected algorithm has been the Differential Evolution
Cooperative Coevolution (DECC), which is an adaptation of the
DECC-G algorithm from Yang et al. [1]. The motivation of the
DECC-G algorithm is to apply cooperative coevolution to
decompose high dimensional and non-separable problems. In high
dimensional problems, it is beneficial to apply cooperative
coevolution for decomposing the problem in smaller problems but
previous cooperative coevolution techniques failed when the
problem is non-separable, because they do not account for the
relations between the variables. The DECC-G algorithm change
the decomposition strategy to solve non-separable problems. The
proposed decomposition strategy is to make groups of
interdependent variables that improve the optimization and uses
an advanced evolutionary algorithm like Differential Evolution
(DE) to optimize each component. Another innovation is that
previous cooperative coevolutionary algorithms did not use a
state of the art evolutionary technique like DE but instead simpler
genetic algorithms. One algorithm that extends the DECC-G
algorithm is the MLCC (Multilevel Cooperative Coevolutionary)
algorithm, that adjust automatically the group size [2].

The DECC algorithm combines concepts from both approaches
(grouping strategy and DE recombination operator) to apply it to
the coordination of a team of robots. The algorithms proceed as
follows:

• First of all, there is a vector of all the variables of the problem
that will be divided in groups, with each group evolving in
isolated instances of a differential evolution algorithm. The
number of components depends on the grouping size. In each
cycle, the first step of the algorithm is to permute the vector
of variables. This step can be omitted and the groups will be
assigned initially and remain fixed in the case of the variation
named DECC-FG (DECC with fixed groups). Or it can be
randomly assigned for each evolutionary generation as it is
the case of the version shown in Algorithm 1 (DECC-RG).

• After the permutation, new populations of DE are created
with the corresponding groups of variables and they are
evolved for a number of evaluations. One cycle of the
algorithm consists of evolving each of these components
sequentially. Given that each component has an internal
population, there are a lot of combinations but here the
process is sequential, with an off-line evolution, evolving one
group of variables each time.

• For each evaluation, the current variables are transferred to
the robots and they try to perform the task for a number of
iterations. After the evaluation, the environment is reset. The
evaluation of a group of variables provides the global fitness
of the team in the task.

• If the groups of variables are fixed and assigned exactly to
the control parameters of one robot, the evaluation of the
group and the robot private fitness in the task would
coincide. This version of the algorithm using private fitness
is referred here as DECC-FG-Private.

• After one component has evolved for the specified time, the
best variables for this group are modified in the variable
vector, and the next component will evolve with these new
solutions.

• Finally, when all components had evolved, new groups are
created and evolution of all components starts again until a
number of cycles are completed.

Encapsulated Embodied Evolution
As for the encapsulated version of EE algorithms, several
implementations can be found [3][4], which basically follow the
same operating principles with minor changes in the evaluation
of individuals. To take part in this comparison, we have followed
the operation scheme of those algorithms and implemented them
with some structural changes in the evaluation in order to make
the results comparable with those of DECC approaches. In other
encapsulated algorithms, the time for evaluation is shared
between the individuals of each population but in our
encapsulated algorithm a high fitness controller will have more
evaluations than a bad controller.

The encapsulated EE algorithm follows the pseudocode shown in
Algorithm 2. Each robot has an internal DE population that evolve
independent from each other. Because of this, multiple
combinations of individuals are possible for forming teams. In our
implementation, before starting any evaluation, a tournament is
made in each robot to select the controller. After that, some of the
populations are chosen to create new individuals. The team with
these new individuals is evaluated for a fixed period of time. If the
global evaluation with the new individuals is higher than previous
global evaluations of their ancestor, the ancestor is replaced. Also,
the individuals that formed the team use the new global fitness to
update their fitness as an average of all the evaluations that
include them. There is no migration between DE populations, so
in this case the populations work as isolated islands. This
operation sequence implies that this algorithm is synchronous
and off-line, since the evaluations are fixed to a period of time.

Two main differences set encapsulated EE and DECC algorithms
apart: on the one hand in this algorithm each robot corresponds
always to the same DE population, with as many DE populations
as robots and a group size that matches the number of parameters

of the controller of one robot, unlike DECC-FG where the group
is fixed but the group size could correspond to several robots. On
the other hand, in DECC, only one group creates new individuals
at a time, but in this algorithm, more than one population can
create new individuals at each cycle since several populations are
selected randomly for creating new individual at each cycle. This
means that this algorithm should converge faster (higher
exploitations, lower exploration) than the previous one because a
larger portion of the variables are modified in each evaluation.
Also, a high number of active populations is not beneficial for the
stability of the evaluations, because with the tournament it can be
considered that the robots whose populations are not active will
perform well with one fit controller.

There is no migration between DE populations, so in this case the
population work as isolated islands. This operational sequence
implies that this algorithm is synchronous and off-line, since the
evaluations are fixed to a period of time.

We also found interesting to implement an asynchronous version
of the algorithm and include it in the comparison. In the
asynchronous encapsulated algorithm, the evolution is on-line
and the controllers are evaluated until they run out of energy
instead of being evaluated for a fixed number of iterations. The
new individuals are generated when the controller runs out of
energy and the change of the controller only affect that robot,
without resetting the environment or changing any other
controller. Because the populations inside the robot are large and
all individuals need to be evaluated, instead of creating a new
individual every time the controller runs out of energy, according
to a probability, a tournament is made to select the next controller
for the corresponding robot.

Distributed Embodied Evolution
Among the existing EE algorithms found in the literature, three
distributed implementations can be noted: mEDEA [5], PGTA [6],
and ASiCo [7]. They have been applied with success to different
multi-robot tasks requiring coordination and adaptation in real
time. In a previous work [8], authors have developed and analyzed
a canonical version of a distributed EE algorithm that generalizes

the operational principles of the three algorithms highlighted
above. In order to capsulize this category, this canonical version
will be used to represent it.
The canonical distributed embodied evolution (dEE) algorithm
parametrizes the basic processes of the embodied evolution
paradigm. It is not the scope of this work to analyze this
parametrization but compare this paradigm versus other
cooperative coevolutionary algorithms like the previously
described. The pseudocode for the dEE algorithm is shown in
Algorithm 3.

EXPERIMENTAL SETUP
To compare the algorithms, we have designed a multi-robot
experiment with all the features established in the introduction
for a collective task inspired in a real-world problem. The
experiment requires to optimize a high-dimensional search space
which is dynamic, decentralized and with a strong
interdependence between controllers, promoting the emergence
of specialized individuals. Moreover, it generalizes other typical
tasks solved in evolutionary robotics, like searching points of
interest, area coverage and so on. Thus, it constitutes a
prototypical application case in this domain, which can be very
useful to analyze the practical response of these algorithms.

Multi-robot surveillance with location accuracy
degradation

In this experiment, we deal with a fleet of Unnamed Aerial
Vehicles (UAVs) that has to collectively survey an indoor scenario.
To do it properly, the UAVs need to locate themselves accurately
to share information with other robots coherently. It is well-
known that the accuracy in the localization is a key aspect in
navigation tasks with autonomous robots, so we propose to
include it as a part of the problem that must be optimized.
The determination of the UAV positions will be performed using
their IMU, the position of other UAVs in sight, and artificial
landmarks that can be sensed using the onboard camera. The

control of each of the UAVs will be obtained by evolution using
the different algorithms presented above, that are in charge of
coordinating the UAVs in the scenario in order to increase the
accuracy of the fleet location, and consequently, the speed at
which a new point of interest is reached.

Figure 1. Parrot ARDrone 2.0 and the visual fiducial
markers
 The experimental setup has been defined in simulation, but based
on a real indoor gathering task performed by real UAVs. The
specific UAV that has been modeled is the Parrot ARDrone 2.0
(displayed in Figure 1). The most important aspect of the
simulation is the model of the response of the location sensors
when a certain maneuver is carried out. Regarding the artificial
landmarks, we have used visual fiducial markers, with a model
that represents the AprilTags created by The APRIL Robotics
Laboratory at the University of Michigan. Therefore, the location
estimation provided by the markers is based on a real accuracy
model which was produced in our laboratory using an ARDrone
2.0 and 40 cm long AprilTags, and that can be formulated as a
function φ which relates the variance of the estimation
𝑉𝑎𝑟(𝑝&'()*) with the relative distance (𝑝&'()* − 𝑝-./) and
orientation (𝑦𝑎𝑤&'()*:-./) between camera and tag:

𝑉𝑎𝑟(𝑝&'()*) = 𝝋(𝑝&'()* − 𝑝-./ , 𝑦𝑎𝑤&'()*:-./)

These tags (permanent tags) provide an absolute and potentially
accurate position estimation, which does not degrade with time.
In order to improve the performance of the navigation by
improving the accuracy of the UAVs, the same type of tags is also
attached to the body of the quadcopters (mobile tags), which will
make up a hybrid location sensor. Therefore, the detection
provided by a mobile tag still constitutes a direct location
estimation but, unlike in the case of permanent tags, their
accuracy degrades as the accuracy of the carrier of the tag
decreases. The accuracy degradation is, however, proportional to
the velocity of the UAV. Therefore, the mobile tags should tend to
stay still to be more efficient as accuracy exchangers. The use of
this type of mobile tags leads to accuracy becoming a resource
that UAVs can get and share to be able to slow down its
degradation, and therefore, to accomplish their main task more
efficiently. It could also allow some of the UAVs not to require
visits to static tags, which are frequently non optimally located, in

order to improve their location accuracy, being ‘nourished’ by
mobile tags.
The scenario was discretized to reduce computational effort as a
768 x 768 (square length units) non-toroidal square arena, which
is provided with 4 fixed tags placed randomly. Figure 2 shows a
schematic representation of a portion of the arena. Each UAV is
associated to both a real and an estimated position. The former is
shown with a solid color in the simulation and the later with a
softened shadow of the UAV. The UAV has no idea of the real
position, this is just an externally obtained value for display
purposes. The further the distance between those positions, the
higher the location estimation error and the lower the exploration
level. Table 1 contains the specific parameters that define the
scenario.

Figure 2. Graphical representation of a portion of the
scenario. The distance to each own shadow represents the
current estimation error for the UAV. The red UAV
represents a mobile tag. The circles around the tags are the
different levels of accuracy provided by the tag.

Table 1. Design parameters of the simulated scenario

Parameter Value
Side of the arena (L) 768
Total area L2
Fixed tags detection range L/4
Mobile tags detection range L/16
Max velocity (Vmax) L/50

The final objective of the surveillance task is for the fleet of UAVs
to continuously cover the maximum possible area. In order to
perform the search of unexplored areas, the UAVs can keep record
of the areas they have already explored. This is stored in an
‘exploration map’ carried by each UAV and that can also be shared
with others when they meet. The exchange of this information
allows the task to be solved cooperatively since it enables the
distribution of the search among the group of UAVs. However,
since the estimation of one’s position has a varying accuracy, the
updating of the exploration map has to take that into account. The
exploration of a cell is modeled as an exploration probability (Pex),
which indicates the probability that a certain cell has of having
been explored. Subsequent UAVs must decide whether or not to

re-explore that cell based on the guaranteed exploration
probability Pex. Therefore, the collaborative exploration map is the
only information that a UAV gets from the scenario about the
surveillance process.

Algorithm configuration
The UAVs are defined by their real spatial location [xr,yr] (they
are supposed to fly at a constant height [zr]) and their estimated
location [xe,ye] (their orientation, given by the yaw angle, is
defined by the direction of movement so it is not required
explicitly). They also display an estimated accuracy (ae), which is
described by the standard deviation of their estimated spatial
coordinates.
Three types of sensors are considered, namely, the explorability
sensor (E), the available accuracy (Aa) and the current exploration
level of the UAV (Dex). The first two sensors are associated to a
certain portion of the arena (a group of neighboring cells), where
the potential increase of exploration that the UAV can provide if
it visits it is calculated (E) together with an estimation of the
available accuracy (Aa) as a combination of the distance and
accuracy of the closest tag. Several groups of neighboring cells of
different sizes are considered (1, 3x3, 6x6 and 12x12, up to 36
groups of cells in total) and their sensed parameters are calculated.
Those values together with the current exploration level of the
UAV (the exploration probability it will set if it visits a cell) will
constitute the inputs to the control unit. As actuators, the UAVs
can execute one of five predefined behaviors: near exploration,
distant exploration, accuracy sharing, increase accuracy or tag
avoidance. Thus, only their motion is controlled by the control
unit, since the rest of actions are performed automatically based
on the relative position between the UAVs and between UAVs and
tags.The control unit is in charge of defining the actuation of the
UAVs, which is, in a nutshell, their motion. It defines its operation
based on a set of parameters (8) that will be used as weighting,
threshold and duration coefficients to define the criteria to select
the target area of the arena from a set of neighboring candidates.
The global fitness (F) is defined by the task as the average of the
exploration level (𝑒7) of each area of the arena. The higher the
global fitness the faster and more exhaustive the exploration the
fleet is performing. Being M the number of areas in which the
arena is divided:

𝐹	 = 	
𝑒7:	.'*.;

7<=
𝑀

The private fitness (fj) defined in this scenario for each of the
individuals is calculated using the sum of the increment in

exploration it provides to each cell it visits D𝑒7
? . However, we

can find individuals (or actions of individuals) that collaborate to
the success of the global aim but which do not explore the
scenario. Those are the individuals that provide location accuracy

(𝑠7
? , shared accuracy from the ith individual to the jth) to the rest

of the UAVs. Therefore, the reward assigned for the exploration
to one individual will be shared with the individuals that provided
the accuracy used to perform that exploration (if that was the
case) according to a trade fee (𝑡B). This fee will set the percentage
of the exploration level achieved that will be returned to the

‘accuracy provider’, and of course subtracted from the explorer,
as a function of the level of accuracy exchanged. Using this
fitness-sharing scheme we allow an adjustable credit assignment
policy:

𝑓? = (D𝑒7
? − (𝑠D

?𝑡B)
E	F.G;

D<H

)
:	.'*.;

7<H

+ (𝑠?D𝑡B)
E	F.G;

D<H

Table 2: Parameterization of algorithms

Parameter Value
DECC

DE populations 40
Group size 4
DE: population size 10
DE: F 0.5
DE: CR 0.5
Evaluations in cycle 100
Evaluation time 1000
Iterations in cycle 4x106
Cycles 10
Total iterations 4x107

Encapsulated EE
DE populations 40
DE: population size 10
DE: F 0.5
DE: CR 0.5
Evaluation time 1000
Total iterations 4x107

Canonical dEE
Maximum lifetime 1000
Maturity time 1
Selection criteria F
Tournament size 40
Local search
probability

0.99

Mediocrity
coefficient

0.01

Total iterations 4x107

The task is performed by 40 robots controlled with a feedforward
network encoded in a genotype of 4 real values. In the off-line
algorithms (DECC and encapsulated) each team is evaluated
during 1000 steps and the environment is reset for each
evaluation. Specific parameters for the three types of algorithms
are shown in Table 2, which have been adjusted to produce the
best solutions according to the authors’ recommendations.

RESULTS
In this section, a comparison regarding the performance of all
algorithms is presented. This performance is evaluated with
respect to: the global fitness obtained by each algorithm after a
limited number of iterations and the time required to obtain a
predefined satisfactory fitness level. The limit of iterations is set

to a very high number in order to let all the algorithms enough
time to converge to their best solutions. To evaluate this fitness,
it should be noted that these results compare algorithms that
evolve on-line with algorithms that evolve off-line. Given that the
DECC algorithm and its variants and the encapsulated algorithm
evolve off-line, they need to reset the scenario in order to evaluate
new teams that could perform very differently in the task. For this
reason, instead of an instantaneous measure of fitness in the task
that could fluctuate between evaluations, a more representative
estimation of fitness is given by the best fitness achieved by the
best team found. The global fitness employed represents the
exploration level of the environment, that ranges, theoretically,
from 0 (totally unexplored environment) to 8 (totally explored
environment). Practically, with the defined scenario dimensions,
number of robots, and other task parameters, the maximum
attainable exploration level is around 80-90% of the theoretical
one (around 6-7).

Figure 3: Performance comparison of the algorithms in the
exploration task

Fig. 3 contains the average exploration level obtained for the six
algorithms throughout iterations. Each algorithm was executed 20
times, each of them implying about 4 hours in an i7 4770s
processor, and the resulting exploration level was averaged
between them. The most significant result that can be extracted
from this figure is the time required to reach stable solutions,
which is much lower in the on-line algorithms (asynchronous
encapsulated and canonical dEE), as expected. They improve their
exploration level quickly, and in around 5 million iterations,
which constitutes the 12,5% of the total iterations, they reach a
stable range that continues until the final iteration. In contrast,
the off-line algorithms (encapsulated and DECC variants) require
almost half of the total iterations to reach a stable solution. The
encapsulated algorithm provides the best results in the off-line
approaches, while the DECC-FG obtains the best performance of
the DECC variants.
In order to analyse the exploration level value, it must be pointed
out that on-line algorithms cannot be directly compared with off-
line ones, because the scenario is not restarted. To solve it, the
best teams obtained with the on-line algorithms are stored at a

fixed number of iterations for later re-evaluation, like in the case
of off-line approaches. The exploration level obtained by the on-
line approaches considering this re-evaluation is displayed with
the pointed lines in Fig. 3 (the two bottom symbols in the figure
legend). As it can be seen, now the on-line algorithms reach a
stable level very similar to the off-line encapsulated version, but
still better than the DECC variants.
In order to clarify the performance provided by the different
algorithms, an analysis of the behaviour of the best populations
obtained was performed. To do it, we have introduced a new
metric called behavioural heterogeneity which will estimate the
diversity of behaviours that each individual activates during its
lifetime, considering the five possible behaviours described in
section 3.2. A high heterogeneity value represents an individual
which continuously switches its behaviour, while a low
heterogeneity (zero) implies that only one behaviour is activated.
High values of heterogeneity are associated to low degree of
specialization in the population and conversely low heterogeneity
is produced by a high degree of specialization.

Figure 4: Behavior heterogeneity for the dEE algorithm

In Fig. 4, the behavioural heterogeneity provided by the dEE
algorithm is shown. It is calculated by executing the final
configuration of controllers obtained after evolution during 1000
iterations. There are 40 lines corresponding to the 40 robots, but
most part of the lines (38 out of 40) are just above the horizontal
line of heterogeneity 0. As mentioned, heterogeneity 0 represents
individuals that had the same behaviour for all the iterations. Only
two robots show heterogeneity equal to 0.5 which corresponds to
switching between two different behaviours during its lifetime. In
Fig. 5, the behavioural heterogeneity for the asynchronous
encapsulated algorithm is displayed. The axes are the same as the
previous figure and most of the lines are again over heterogeneity
0. In this case, 36 out of 40. Finally, the results provided by the off-
line encapsulated algorithm can be seen in Fig. 6. Still most of the
lines tend to be close to zero but the effect is much weaker than
in the previous cases. For the rest of the off-line algorithms, the
tendency to heterogeneity zero is almost non-noticeable so they
are not displayed.
Therefore, as noticed during the realization of the tests, there is a
clear relation between the performance and the specialization of

the population in this type of multi-robot optimization problems.
Thus, the on-line algorithms, and specially the dEE, exploit their
simplicity in this domain in order to specialize individuals in
simple tasks so evolution is much faster than in off-line
approaches, where the several evolution processes that are
executed in parallel makes the optimization slower and more
complex.

Figure 5: Behavior heterogeneity for the asynchronous
encapsulated algorithm

Figure 6: Behavior heterogeneity for the encapsulated
algorithm

DETAILED CONCLUSIONS
This work has provided some insights into the problem of
obtaining and evolutionary approach that can optimize wide-
range multi-robot problems. We have shown through a high-
dimensional and realistic experiment that Embodied Evolution
approaches have a high potential in this domain, mainly due to
their design principles: on-line, on-board evolution with
heterogeneous genotypes. These three features allow them to
obtain specialized individuals that can solve complex tasks
without resorting to high time-consuming evaluations, which
results in a much lower number of iterations to reach the optimal
solution. In the future, we will continue exploring the application
of Embodied Evolution approaches to general multi-robot

problems and pursuing a better understanding of its operational
mechanisms to improve its performance

REFERENCES TO ALGORITHM DESCRIPTION
[1] Z. Yang, K. Tang, X. Yao, Large scale evolutionary optimization using

cooperative coevolution. 2008. Informat. Sciences 178-15, Elsevier, 2985-2999
[2] Z. Yang, K. Tang and Xin Yao. 2008. Multilevel cooperative coevolution for

large scale optimization. IEEE Conf on Evolutionary Computation, 1663-1670
[3] S. Elfwing, E. Uchibe, K. Doya, H. Christensen. 2011. Darwinian embodied

evolution of the learning ability for survival. Adaptive Behavior, 19(2), SAGE
Press, 101–120

[4] E. Haasdijk, A.E. Eiben, G. Karafotias. 2010. On-line evolution of robot
controllers by an encapsulated evolution strategy. Proceedings IEEE
CEC2010, IEEE Press, 1-7

[5] N. Bredeche, J.M. Montanier, W. Liu, A. Winfield. 2012. Environment-driven
Distributed Evolutionary Adaptation in a Population of Autonomous Robotic
Agents, Mathematical and Computational Modelling of Dynamical Systems 18,
1, 101-129

[6] R. Watson, S. Ficici, J. Pollack. 2002. Embodied evolution: Distributing an
evolutionary algorithm in a population of robots, Robotics and Autonomous
Systems, 39(1), Elsevier, 1-18.

[7] A. Prieto, J.A. Becerra, F. Bellas, R.J. Duro. 2010. Open-ended Evolution as a
means to Self-Organize Heterogeneous Multi-Robot Systems in Real Time,
Robotics and Autonomous Systems, vol. 58, 1282-1291

[8] A. Prieto, F. Bellas, P. Trueba, R.J. Duro. 2015. Towards the standardization
of distributed Embodied Evolution, Information Sciences, vol 312, 55-77

